New and Exciting in PLoS ONE

There are 21 new articles in PLoS ONE today. As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

Universal Behavior of Extreme Price Movements in Stock Markets:

Many studies assume stock prices follow a random process known as geometric Brownian motion. Although approximately correct, this model fails to explain the frequent occurrence of extreme price movements, such as stock market crashes. Using a large collection of data from three different stock markets, we present evidence that a modification to the random model–adding a slow, but significant, fluctuation to the standard deviation of the process–accurately explains the probability of different-sized price changes, including the relative high frequency of extreme movements. Furthermore, we show that this process is similar across stocks so that their price fluctuations can be characterized by a single curve. Because the behavior of price fluctuations is rooted in the characteristics of volatility, we expect our results to bring increased interest to stochastic volatility models, and especially to those that can produce the properties of volatility reported here.

A Pleistocene Clone of Palmer’s Oak Persisting in Southern California:

The distribution of Palmer’s oak (Quercus palmeri Engelm.) includes numerous isolated populations that are presumably relicts of a formerly larger range that has contracted due to spreading aridity following the end of the Pleistocene. We investigated a recently discovered disjunct population of Palmer’s oak in the Jurupa Mountains of Riverside County, California. Patterns of allozyme polymorphism, morphological homogeneity, widespread fruit abortion, and evidence of fire resprouting all strongly support the hypothesis that the population is a single clone. The size of the clone and estimates of annual growth from multiple populations lead us to conclude that the clone is in excess of 13,000 years old. The ancient age of the clone implies it originated during the Pleistocene and is a relict of a vanished vegetation community. Range contraction after climate change best explains the modern disjunct distribution of Q. palmeri and perhaps other plants in California.

Effect of the Novel Influenza A (H1N1) Virus in the Human Immune System:

The pandemic by the novel H1N1 virus has created the need to study any probable effects of that infection in the immune system of the host. Blood was sampled within the first two days of the presentation of signs of infection from 10 healthy volunteers; from 18 cases of flu-like syndrome; and from 31 cases of infection by H1N1 confirmed by reverse RT-PCR. Absolute counts of subtypes of monocytes and of lymphocytes were determined after staining with monoclonal antibodies and analysis by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were isolated from patients and stimulated with various bacterial stimuli. Concentrations of tumour necrosis factor-alpha, interleukin (IL)-1beta, IL-6, IL-18, interferon (FN)-alpha and of IFN-gamma were estimated in supernatants by an enzyme immunoassay. Infection by H1N1 was accompanied by an increase of monocytes. PBMCs of patients evoked strong cytokine production after stimulation with most of bacterial stimuli. Defective cytokine responses were shown in response to stimulation with phytohemagglutin and with heat-killed Streptococcus pneumoniae. Adaptive immune responses of H1N1-infected patients were characterized by decreases of CD4-lymphocytes and of B-lymphocytes and by increase of T-regulatory lymphocytes (Tregs). Infection by the H1N1 virus is accompanied by a characteristic impairment of the innate immune responses characterized by defective cytokine responses to S.pneumoniae. Alterations of the adaptive immune responses are predominated by increase of Tregs. These findings signify a predisposition for pneumococcal infections after infection by H1N1 influenza.

Evolution of Primary Hemostasis in Early Vertebrates:

Hemostasis is a defense mechanism which protects the organism in the event of injury to stop bleeding. Recently, we established that all the known major mammalian hemostatic factors are conserved in early vertebrates. However, since their highly vascularized gills experience high blood pressure and are exposed to the environment, even very small injuries could be fatal to fish. Since trypsins are forerunners for coagulation proteases and are expressed by many extrapancreatic cells such as endothelial cells and epithelial cells, we hypothesized that trypsin or trypsin-like proteases from gill epithelial cells may protect these animals from gill bleeding following injuries. In this paper we identified the release of three different trypsins from fish gills into water under stress or injury, which have tenfold greater serine protease activity compared to bovine trypsin. We found that these trypsins activate the thrombocytes and protect the fish from gill bleeding. We found 27 protease-activated receptors (PARs) by analyzing zebrafish genome and classified them into five groups, based on tethering peptides, and two families, PAR1 and PAR2, based on homologies. We also found a canonical member of PAR2 family, PAR2-21A which is activated more readily by trypsin, and PAR2-21A tethering peptide stops gill bleeding just as trypsin. This finding provides evidence that trypsin cleaves a PAR2 member on thrombocyte surface. In conclusion, we believe that the gills are evolutionarily selected to produce trypsin to activate PAR2 on thrombocyte surface and protect the gills from bleeding. We also speculate that trypsin may also protect the fish from bleeding from other body injuries due to quick contact with the thrombocytes. Thus, this finding provides evidence for the role of trypsins in primary hemostasis in early vertebrates.

Evaluation of the Efficacy and Cross-Protectivity of Recent Human and Swine Vaccines against the Pandemic (H1N1) 2009 Virus Infection:

The current pandemic (H1N1) 2009 virus remains transmissible among humans worldwide with cases of reverse zoonosis, providing opportunities to produce more pathogenic variants which could pose greater human health concerns. To investigate whether recent seasonal human or swine H1N1 vaccines could induce cross-reactive immune responses against infection with the pandemic (H1N1) 2009 virus, mice, ferrets or mini-pigs were administered with various regimens (once or twice) and antigen content (1.77, 3.5 or 7.5 µg HA) of a-Brsibane/59/07, a-CAN01/04 or RgCA/04/09xPR8 vaccine. Receipt of a-CAN01/04 (2-doses) but not a-Brisbane/59/07 induced detectable but modest (20-40 units) cross-reactive serum antibody against CA/04/09 by hemagglutinin inhibition (HI) assays in mice. Only double administration (7.5 µg HA) of both vaccine in ferrets could elicit cross-reactivity (30-60 HI titers). Similar antigen content of a-CAN01/04 in mini-pigs also caused a modest ~30 HI titers (twice vaccinated). However, vaccine-induced antibody titers could not suppress active virus replication in the lungs (mice) or virus shedding (ferrets and pigs) of immunized hosts intranasally challenged with CA/04/09. Furthermore, neither ferrets nor swine could abrogate aerosol transmission of the virus into naïve contact animals. Altogether, these results suggest that neither recent human nor animal H1N1 vaccine could provide complete protectivity in all animal models. Thus, this study warrants the need for strain-specific vaccines that could yield the optimal protection desired for humans and/or animals.

Telomere Length in Human Adults and High Level Natural Background Radiation:

Telomere length is considered as a biomarker of aging, stress, cancer. It has been associated with many chronic diseases such as hypertension and diabetes. Although, telomere shortening due to ionizing radiation has been reported in vitro, no in vivo data is available on natural background radiation and its effect on telomere length. The present investigation is an attempt to determine the telomere length among human adults residing in high level natural radiation areas (HLNRA) and the adjacent normal level radiation areas (NLNRA) of Kerala coast in Southwest India. Genomic DNA was isolated from the peripheral blood mononuclear cells of 310 individuals (HLNRA: N = 233 and NLNRA: N = 77). Telomere length was determined using real time q-PCR. Both telomere (T) and single copy gene (S) specific primers were used to calculate the relative T/S and expressed as the relative telomere length. The telomere length was determined to be 1.22±0.15, 1.12±0.15, 1.08±0.08, 1.12±0.11, respectively, among the four dose groups (≤1.50, 1.51-3.00, 3.01-5.00 and >5.00 mGy per year), which did not show any dose response. The results suggested that the high level natural chronic radiation did not have significant effect on telomere length among young adult population living in HLNRA, which is indicative of better repair of telomeric ends. No significant difference in telomere length was observed between male and female individuals. In the present investigation, although the determination of telomere length was studied among the adults with an age group between 18 to 40 years (mean maternal age: 26.10±4.49), a negative correlation was observed with respect to age. However, inter-individual variation was (0.81-1.68) was clearly observed. In this preliminary investigation, we conclude that elevated level of natural background radiation has no significant effect on telomere length among the adult population residing in HLNRAs of Kerala coast. To our knowledge, this is the first report from HLNRAs of the world where telomere length was determined on human adults. However, more samples from each background dose group and samples from older population need to be studied to derive firm conclusions.

About these ads

Comments are closed.