Category Archives: Science Practice

The Bezos Scholars Program at the World Science Festival

The World Science Festival is a place where one goes to see the giants of science, many of whom are household names (at least in scientifically inclined households) like E. O. Wilson, Steven Pinker and James Watson, people on top of their game in their scientific fields, as well as science supporters in other walks of life, including entertainment—Alan Alda, Maggie Gullenhal and Susan Sarandon were there, among others—and journalism (see this for an example, or check out more complete coverage of the Festival at Nature Network).

With so many exciting sessions, panels and other events at the Festival, it was hard to choose which ones to attend. One of the events I especially wanted to see centered on the other end of the spectrum—the youngest researchers, just getting to taste the scientific life for the first time in their lives.

On the morning of Saturday the 4th, four high school seniors from New York schools presented their research at the N.Y.U. Kimmel Center. This is the second year that the project, The Bezos Scholars Program, sponsored jointly by the Bezos Family Foundation and the World Science Festival, took place.

Each student starts the program as a high school junior and, with mentoring by a science teacher and a scientist or engineer in the community, spends a year working on the project. At the end of the year, the students get to present their findings at the Festival and also get to meet the senior scientists, attend other events, all expenses paid by the Bezos Family.

The event, so far, has not been broadly advertised by the Festival probably to avoid having crowds in the thousands assembling to give the students stage fright. Still, the room was filled by dozens of local scientists, writers and educators and the students certainly did not disappoint.

It is important to note here that a big part of organization, coordination and coaching was done by Summer Ash (see also).

The projects

To summarize the research projects, I asked Perrin Ireland to provide cartoon versions of the presentations. Perrin Ireland is a graphic science journalist who currently serves as Science Storyteller at AlphaChimp Studio, Inc. She uses art and narrative to facilitate scientists sharing their stories, and creates comics about the research process.

More importantly for us here, unlike most of us who write notes when attending presentations, Perrin draws them. You can find more of Perrin’s work at Small and Tender, and follow her on Twitter at @experrinment.

“Aluminum Ion-Induced Degeneration of Dopamine Neurons in Caenorhabditis elegans”

First up was Rozalina Suleymanova from Bard High School Early College Queens. Her teacher is Kevin Bisceglia, Ph.D. and her mentor is Dr. Maria Doitsidou from The Hobert Laboratory in the Department of Biochemistry & Molecular Biophysics at Columbia University Medical Center.

Aluminum is found in brain tissues of Alzheimers’ patients. It is reasonable to hypothesize that aluminum can also affect neurons in other neurodegenrative diseases such as Parkinson’s. In Parkinson’s, it is the neurons that secrete dopamine that are affected.

Human brains are large and complex, but the nematode worm Caenorhabditis elegans has a simple nervous system in which every individual neuron (out of a total of 302) is known – where it is, what neurotransmitter it uses, and what function it performs. It is also an excellent laboratory model organism, with easy husbandry and breeding, short lifespan, and genetic techniques in place.

What Rozalina Suleymanova did was make a new strain of C.elegans in which only the eight dopamine-releasing neurons express green fluoresecent protein which allowed her to see them under a epiflorescence microscope.

She then exposed the worms to different doses of aluminum(III) in the form of AlCl3 either as acute exposure (30 minutes of high concentration) or as chronic exposure (12 days of continuous exposure of lower concentration).

Under the acute regimen, some worms died (how many – depended on the concentration). But the worms that survived showed no changes in the dopamine neurons. Under chronic exposure, all worms survived and only a very small proportion (not different from chance) showed some minor changes in the dopamine neurons. Thus, essentially negative results (hard to publish), but excellent work!

“The Structural Stability of Trusses”

Next up was Matthew Taggart from the NYC LAB School for Collaborative Studies, his teacher and Ali Kowalsky and his mentors Jeremy Billig, P.E., Senior Engineer at McLaren Engineering Group in NYC.

He used a program called Risa3D to build virtual bridges. The program enabled him to test the design of bridges built of iron trusses.

By varying heights (‘depth’) and widths (‘span’) of trusses and applying vertical downward force onto them until they broke, he discovered that it is the height-width ratio, not either one of the dimensions alone, that determines the strength and resistance of this kind of bridge design.

Needless to say, these kinds of calculations are performed during the process of actual design of infrastructure – using computer program first, verifying by hand calculations second, then doing test designs before starting the real construction.

“Identifying Presence of Race Bias Among Youth”

Saba Khalid from the Brooklyn Technical High School was the third student researcher up on stage, accompanied by her teacher Janice Baranowski, and her mentor Dr. Gaëlle C. Pierre from the Department of Psychology at NYU School of Medicine.

She devised a questionnaire, based on some older literature on race perception, and distributed it to the students at her school. Each question showed five pictures of dolls, each with a different skin tone, and asked which of the five dolls is most likely to be working in a particular profession.

Saba Khalid then analyzed the data correlating the responses to the race/ethnicity of the responder, to their socio-economic status and other parameters.

Out of many different responses, Saba Khalid pointed out three examples that are in some way typical. For one, respondents of all races predominantly pointed the darkest doll as a likely employee in a fast-food restaurant. At the other end, most respondents of all races chose the lightest doll for the profession of a pilot. Interestingly, for the profession of a teacher, the answers were quite evenly spread, with some tendency for respondents to pick a doll closest to their own skin color.

“Proactive and Reactive Connection Relevance Heuristics In A Virtual Social Network”

Finally, Tyler A. Romeo from the Staten Island Technical High School took stage. His teacher is Frank Mazza and his mentor is Dr. Dennis Shasha from the Department of Computer Science at the Courant Institute of Mathematical Sciences at NYU.

There are two ways an online service can make recommendations to its users. One method tracks the user’s prior choices and recommends items that are similar in some way. Think of Amazon.com recommending books similar to the books you have looked at or ordered. The other method is collaborative filtering – the site recommend items that other users who are similar to you have liked in the past.

What Tyler Romeo did was to recruit eight volunteers from his school who are active Facebook users, and wrote an app for them to install. The app analyzed prior behavior of these users as to which items they found interesting (by commenting or “Like”-ing) using the type and length (but not content) of the post as a key parameter. Tyler then used a support vector machine to predict which new items on the participants’ Facebook walls would be considered interesting by others.

What Tyler concluded was that a support vector machine may be able to predict which posts users will find interesting. Also, “cleaning up” the Facebook Walls to include only the “interesting” posts improved the overall quality of the posts compared to a random feed, which can possibly lead to an improved experience for the user.

***

After the event, several of us in the audience concluded that the quality of the work we just saw was definitely higher than expected for high school – college level for sure, and the Nematode work probably as good as a Masters project. Also, the way they did the presentations gave us confidence to ask tough questions and not to treat them too gently just because they are so young.

And it is there, during the Q&A sessions, where they really shone and showed that they truly own their research and are not just well coached by Summer Ash and their mentors. They understood all questions, addressed every component of multi-component questions, demonstrated complete grasp of the issues, and always gave satisfactory answers (and yes, sometimes saying “I don’t know” is a satisfactory answer even if you are much older than 18 and not just entering the world of science).

They identified weaknesses in their experiments, and suggested good follow-up experiments for the future. I was deeply impressed by their focus and presence of mind – I know for myself how hard it is to do a good Q&A session after giving a presentation. They are definitely going places – I hope they choose careers in science as they have what it takes to succeed.

***

My first thought, after being so impressed by the presentations, was: why only four students? There must be many more talented students in New York schools, with aptitude for and interest in science and engineering.

Finding the right match between three very busy people—the student, the teacher and the mentor—and then coordinating their times and sustaining the work and enthusiasm for an entire year must be quite a challenge.

I am wondering how much a program like this can be scaled up to include more students. Also, having such a program in a city that is smaller, slower, less competitive than New York City, where fewer such educational organizations may exist but are more likely to see each other as collaborators than competitors, may be easier. It would be interesting to see how well similar programs do in other places. But for now, clearly, New York City takes the lead. Great job!

Stories: what we did at #WSF11 last week

As you probably know, I spent last week in New York City, combining business with pleasure – some work, some fun with friends (including #NYCscitweetup with around 50 people!), some fun with just Catharine and me, and some attendance at the World Science Festival.

My panel on Thursday afternoon went quite well, and two brief posts about it went up quickly on Nature Network and the WSF11 official blog.

But now, there is a really thorough and amazing piece on it, combining text by Lena Groeger (who also did a great job livetweeting the event) with comic-strip visualization of the panel by Perrin Ireland – worth your time! Check it out: All about Stories: How to Tell Them, How They’re Changing, and What They Have to Do with Science

More about the trip and the Festival still to come…

Update: See also coverage at Mother Geek.

Scientific Communication all-you-can-eat Linkfest

About a week ago, Catherine Clabby (editor at American Scientist), Anton Zuiker and I did a two-day workshop on science communication with the graduate students in the Biology Department at Wake Forest University in Winston-Salem, NC. Here are some of the things we mentioned and websites we showed during those two days.

Links shown by Anton for the personal web page session:

Official homepage of Aaron Martin Cypess, M.D., PH.D.
Stanford Medicine faculty profiles
Web Pages That Suck
Anton Zuiker (old homepage)
Biology: Faculty at Wake Forest
Official homepage of Thomas L. Ortel, MD, PhD
Official homepage of Matthew Hirschey
About.me
Joe Hanson’s About.me page
Jakob Nielsen’s Utilize Available Screen Space
Official homepage of Jacquelyn Grace
Laboratory and Video Web Site Awards
Web Style Guide

Link to the step-by-step page for creating a WordPress blog:

Simple exercises for creating your first blog

Links shown during the social media session:

Anton’s Prezi presentation
Delicious link sharing
Twitter and a tweet
Facebook – you know it, of course. Here’s the fish photo
LinkedIn
Tumblr
Posterous
Bora’s take on Tumblr and Posterous

==========================

From Cathy Clabby:

References:

Good books on writing well:

Writing Tools: 50 Essential Strategies for Every Write by Roy Peter Clark
On Writing Well by William K. Zinsser
Eats Shoots & Leaves by Lynne Truss.
The Elements of Style by William Strunk and E.B. White

Excellent articles on how to avoid gobbledygook when writing about science:

Deborah Gross and Raymond Sis. 1980. Scientific Writing: The Good, The Bad, and The Ugly. Veterinary Radiology
George Gopen and Judith Swan. 1990 The Science of Scientific Writing. American Scientist

Web resources for good-writing advice:

Websites with smart writing advice:

Roy Peter Clark from the Poynter Institute offers these 50 “quick list” writing tools.
Purdue University’s OnLine Writing Lab
Carl Zimmer’s banned words (updated regularly on The Loom, his Blog)

You are what you read:

Newsstand magazines with excellent science writing:

The New Yorker
Discover
National Geographic
Scientific American
American Scientist
Outside

Books featuring clear, vivid science writing:

The Beak of a Finch by Jonathan Weiner
The Map that Changed the World by Simon Winchester
Lives of a Cell: Notes of a Biology Watcher by Lewis Thomas
Galileo’s Daughter by Dava Sobel
The Making of the Atomic Bomb by Richard Rhodes
The Emperor of All Maladies by Siddhartha Mukherjee
The Best American Science Writing (a yearly anthology with a changing cast of guest editors)
The Best American Science and Nature Writing (another yearly anthology)

==========================

From Bora:

Workshop on conferences in the age of the Web:

How To Blog/Tweet a Conference:
How To Blog a Conference
On the challenges of conference blogging
What a difference a year makes: tweeting from Cold Spring Harbor

How to present at a conference mindful of Twitter backchatter:

How the Backchannel Has Changed the Game for Conference Panelists
On organizing and/or participating in a Conference in the age of Twitter

Icons to put on your slides and posters:

Creating a “blog-safe” icon for conference presentations: suggestions?
CameronNeylon – Slideshare: Permissions
Andy and Shirley’s new ONS Logos

A good recent blog post about the changes in the publishing industry (good links within and at the bottom):
Free Science, One Paper at a Time

Open Notebook Science:
Open Notebook Science
UsefulChem Project
Open Science: Good for Research, Good for Researchers?

A little bit of historical perspective on science, science journalism, blogging and social media (and you can endlessly follow the links within links within links within these posts):
The line between science and journalism is getting blurry….again
Why Academics Should Blog: A College of One’s Own
The Future of Science
Visualizing Enlightenment- Era Social Networks
“There are some people who don’t wait.” Robert Krulwich on the future of journalism
A Farewell to Scienceblogs: the Changing Science Blogging Ecosystem
New science blog networks mushroom to life
Science Blogging Networks: What, Why and How
Web breaks echo-chambers, or, ‘Echo-chamber’ is just a derogatory term for ‘community’ – my remarks at #AAASmtg
Is education what journalists do?
All about Stories: How to Tell Them, How They’re Changing, and What They Have to Do with Science
Telling science stories…wait, what’s a “story”?
Blogs: face the conversation
Identity – what is it really?
Books: ‘Reinventing Discovery: The New Era of Networked Science’ by Michael Nielsen
#scio12: Multitudes of Sciences, Multitudes of Journalisms, and the Disappearance of the Quote.

Where to find science blogs (and perhaps submit your own blog for inclusion/aggregation):
ScienceBlogging.org
ScienceSeeker.org
ResearchBlogging.org

A blog about science blogging, especially for scientists – well worth digging through the archives:
Science of Blogging

A blog post about science that was inspired by a previous post on the same blog:
1000 posts!

A blog post about the way a previous blog post put together a researcher and a farmer into a scientific collaboration:
Every cell in a chicken has its own male or female identity
In which I set up a collaboration between a biologist, a farmer and a chimeric chicken

A blog post demonstrating how to blog about one’s own publication:
The story behind the story of my new #PLoSOne paper on “Stalking the fourth domain of life”
Comments, Notes and Ratings on: Stalking the Fourth Domain in Metagenomic Data: Searching for, Discovering, and Interpreting Novel, Deep Branches in Marker Gene Phylogenetic Trees

Another example:
Comments, Notes and Ratings on: Order in Spontaneous Behavior
Paper explained in video at SciVee.tv
Author’s blog and site. See some more buzz.

Collection of links showing how Arsenic Life paper was challenged on blogs:
#Arseniclife link collection

A blog post about a scientific paper that resulted from a hypothesis first published in a previous blog post:
Does circadian clock regulate clutch-size in birds? A question of appropriateness of the model animal.
My latest scientific paper: Extended Laying Interval of Ultimate Eggs of the Eastern Bluebird

A post with unpublished data, and how people still do not realize they can and should cite blog posts (my own posts have been cited a few times, usually by review papers):
Influence of Light Cycle on Dominance Status and Aggression in Crayfish
Circadian Rhythm of Aggression in Crayfish

Good blogs to follow the inside business of science and publishing:
Retraction Watch
Embargo Watch
DrugMonkey and DrugMonkey

Who says that only young scientists are bloggers (you probably studied from his textbook):
Sandwalk

My homepage (with links to other online spaces) and my blog:
Homepage
Blog
Twitter
Facebook

How to find me on Scientific American:
A Blog Around The Clock

Scientific American and its blogs (new blog network, with additional blogs, will launch soon) and social networks:
Scientific American homepage
Scientific American blogs
Scientific American Facebook page
Scientific American official Twitter account
Scientific American MIND on Twitter
Scientific American blogs on Twitter

Cool videos:
Fungus cannon
Octopus Ballet
The Fracking Song

Why blog?
Science Blogs Are Good For You
To blog or not to blog, not a real choice there…
Bloggers unite
Scooped by a blog
Scientists Enter the Blogosphere
“Online, Three Years Are Infinity”
Studying Scientific Discourse on the Web Using Bibliometrics: A Chemistry Blogging Case Study
The Message Reigns Over the Medium
Networking, Scholarship and Service: The Place of Science Blogging in Academia

Great series of post about scientists using blogs and social media by Christie Wilcox:

Social Media for Scientists Part 1: It’s Our Job
Social Media for Scientists Part 2: You Do Have Time.
Social Media for Scientists Part 2.5: Breaking Stereotypes
Social Media For Scientists Part 3: Win-Win

Why use Twitter?

What is Twitter and Why Scientists Need To Use It.
Twitter: What’s All the Chirping About?
Social media for science: The geologic perspective
Why Twitter can be the Next Big Thing in Scientific Collaboration
How and why scholars cite on Twitter
Researchers! Join the Twitterati! Or perish!
Twitter for Scientists
PLoS ONE on Twitter and FriendFeed

Some good Twitter lists and collections/apps:
Attendees at ScienceOnline2012
Scientific American editors, writers and contributors
SciencePond
The Tweeted Times

Some interesting Twitter hashtags:
#scio12 (chatter about ScienceOnline conference, and discussions within that community)
#scio13 (people already talking about next year’s event)
#SITT (Science In The Triangle, NC)
#madwriting (writing support community)
#wherethesciencehappens (pictures of locations where science happens)
#icanhazpdf (asking for and receiving PDFs of papers hidden behind paywalls)
#scimom – scientists and mothers and scientist-mothers.
#scienceblogging
#sciwri – science writing
#sciart – science and art
#histsci – history of science
#IamScience – a great initiative, see: original blog post, Storify, Tumblr, Kickstarter – and see the related Tumblr: This Is What A Scientist Looks Like

The Open Laboratory anthology of science blogging:
The Open Laboratory – what, how and why
The Open Laboratory at Lulu.com
The Open Laboratory 2011 updates
A couple of Big Announcements about The Open Laboratory

ScienceOnline conferences:
ScienceOnline2011
ScienceOnline2012
ScienceOnline2011 programming wiki
ScienceOnline2012 programming wiki
ScienceOnline2012 homepage
ScienceOnline2012 official blog
ScienceOnline2012 coverage blog
ScienceOnline2012 organizing wiki
ScienceOnline2012 blog and media coverage
ScienceOnline2013 organizing wiki
ScienceOnline participants’ interviews

Probably the best and most current book on science communication for scientists is ‘Explaining Research‘ by Dennis Meredith – see the book homepage and the associated blog for a wealth of additional information and updates.

Probably the best book for preparing oral (and to a smaller degree poster) presentations is Dazzle ‘Em With Style: The Art of Oral Scientific Presentation by Robert Anholt.

For posters, dig through the archives of this blog:
Better Posters

The line between science and journalism is getting blurry….again

 

Human #1: “Hello, nice weather today, isn’t it?”

Human #2: “Ummm…actually not. It’s a gray, cold, windy, rainy kind of day!”

Many a joke depends on confusion about the meaning of language, as in the example above. But understanding the sources of such confusion is important in realms other than stand-up comedy, including in the attempts to convey facts about the world to one’s target audience.

In the example above, Human #1 is using Phatic language, sometimes referred to as ‘small talk‘ and usually exemplified, at least in the British Isles, with the talk about the highly unpredictable weather. (image: by striatic on Flickr)

Phatic language

Phatic discourse is just one of several functions of language. Its role is not to impart any factual information, but to establish a relationship between the people. It conveys things like emotional state, relative social status, alliance, intentions and limits to further conversation (i.e., where the speaker “draws the line”).

If a stranger rides into a small town, a carefully chosen yet meaningless phrase establishes a state of mind that goes something like this: “I come in peace, mean no harm, I hope you accept me in the same way”. The response of the local conveys how the town looks at strangers riding in, for example: “You are welcome…for a little while – we’ll feed you and put you up for the night, but then we hope you leave”. (image: Clint Eastwood in ‘Fistful of Dollars’ from Squidoo)

An important component of phatic discourse is non-verbal communication, as the tone, volume and pitch of the voice, facial expression and body posture modify the language itself and confirm the emotional and intentional state of the speaker.

It does not seem that linguistics has an official term for the opposite – the language that conveys only pure facts – but the term usually seen in such discussions (including the domain of politics and campaigning) is “Conceptual language” so this is what I will use here. Conceptual language is what Human #2 in the joke above was assuming and using – just the facts, ma’am.

Rise of the earliest science and journalism

For the sake of this article, I will use two simplified definitions of science and journalism.

Journalism is communication of ‘what’s new’. A journalist is anyone who can say “I’m there, you’re not, let me tell you about it.”

Science is communication of ‘how the world works’. A scientist is anyone who can say “I understand something about the world, you don’t, let me explain it to you”.

Neither definition necessitates that what they say is True, just what they know to the best of their ability and understanding.

Note that I wrote “science is communication”. Yes, science is the process of discovery of facts about the way the world works, but the communication of that discovery is the essential last step of the scientific process, and the discoverer is likely to be the person who understands the discovery the best and is thus likely to be the person with the greatest expertise and authority (and hopefully ability) to do the explaining.

For the greatest part of human history, none of those distinctions made any sense. Most of communication contained information about what is new, some information about the way the world works, and a phatic component. Knowing how the world works, knowing what is happening in that world right now, and knowing if you should trust the messenger, were all important for survival.

For the most part, the information was local, and the messengers were local. A sentry runs back into the village alerting that a neighboring tribe, painted with war-paints, is approaching. Is that person a member of your tribe, or a stranger, or the well-known Boy Who Cried Wolf? What do you know about the meaning of war-paint? What do you know about the neighboring tribe? Does all this information fit with your understanding of the world? Is information coming from this person to be taken seriously? How are village elders responding to the news? Is this piece of news something that can aid in your personal survival?

For the longest time, information was exchanged between people who knew each other to some degree – family, neighbors, friends, business-partners. Like in a fishing village, the news about the state of fishing stocks coming from the ships at sea is important information exchanged at the local tavern. But is that fish-catch information ‘journalism’ (what’s new) or ‘science’ (how the world works)? It’s a little bit of both. And you learn which sailors to trust by observing who is trusted by the locals you have already learned to trust. Trust is transitive.

Someone in the “in-group” is trusted more than a stranger – kids learned from parents, the community elders had the authority: the trust was earned through a combination of who you are, how old you are, and how trustworthy you tended to be in the past. New messengers are harder to pin down on all those criteria, so their information is taken with a degree of skepticism. The art of critical thinking (again, not necessarily meaning that you will always pick the Truth) is an ancient one, as it was essential for day-to-day survival. You trust your parents (or priests or teachers) almost uncritically, but you put up your BS filters when hearing a stranger.

Emergence of science and of journalism

The invention of the printing press precipitated the development of both journalism and science. But that took a very long time – almost two centuries (image: 1851, printing press that produced early issues of Scientific American). After Gutenberg printed the Bible, most of what people printed were political pamphlets, church fliers and what for that time and sensibilities went for porn.

London Gazette of 1666 is thought to be the first newspaper in the modern sense of the word. (image: from DavidCo) Until then, newspapers were mostly irregular printings by individuals, combining news, opinion, fiction and entertainment. After this, newspapers gradually became regular (daily, weekly, monthly) collections of writings by numerous people writing in the same issue.

The first English scientific journal was published a year before – the Philosophical Transactions of the Royal Society of London in 1665 (image: Royal Society of London).

Until then, science was communicated by letters – those letters were often read at the meetings of scientists. Those meetings got formalized into scientific societies and the letters read at such meetings started getting printed. The first scientific journals were collections of such letters, which explains why so many journals have the words “Letters”, “Annals” or “Proceedings” in their titles.

Also, before as well as for a quite a long time after the inception of first journals, much of science was communicated via books – a naturalist would spend many years collecting data and ideas before putting it all in long-form, leather-bound form. Those books were then discussed at meetings of other naturalists who would often respond by writing books of their own. Scientists at the time did not think that Darwin’s twenty-year wait to publish The Origin was notable (William Kimler, personal communication) – that was the normal timeline for research and publishing at the time, unusual only to us from a modern perspective of 5-year NIH grants and the ‘publish or perish’ culture.

As previously oral communication gradually moved to print over the centuries, both journalistic and scientific communication occured in formats – printed with ink on paper – very similar to blogging (that link leads to the post that served as a seed from which this article grew). If born today, many of the old writers, like Montaigne, would be Natural Born Bloggers (‘NBBs’ – term coined by protoblogger Dave Winer). A lot of ship captains’ logs were essentially tweets with geolocation tags.

People who wanted to inform other people printed fliers and pamphlets and books. Personal letters and diaries were meant to be public: they were as widely shared as was possible, they were publicly read, saved, then eventually collected and published in book-form (at least posthumously). Just like blogs, tweets and Facebook updates today….

The 18th century ‘Republic of Letters’ (see the amazing visualization of their correspondence) was a social network of intellectual leaders of Europe who exchanged and publicly read their deep philosophical thoughts, scientific ideas, poetry and prose.

Many people during those centuries wrote their letters in duplicate: one copy to send, one to keep for publishing Collected Letters later in life. Charles Darwin did that, for example (well, if I remember correctly, his wife made copies from his illegible originals into something that recipients could actually read), which is why we have such a complete understanding of his work and thought – it is all well preserved and the availability of such voluminouos correspondence gave rise to a small industry of Darwinian historical scholarship.

What is important to note is that, both in journalism and in science, communication could be done by anyone – there was no official seal of approval, or licence, to practice either of the two arts. At the same time, communication in print was limited to those who were literate and who could afford to have a book printed – people who, for the most part, were just the wealthy elites. Entry into that intellectual elite from a lower social class was possible but very difficult and required a lot of hard work and time (see, for example, a biography of Alfred Russell Wallace). Membership in the worlds of arts, science and letters was automatic for those belonging to the small group of literate aristocracy. They had no need to establish formalized gatekeeping as bloodlines, personal sponsorship and money did the gatekeeping job quite well on their own.

As communication has moved from local to global, due to print, trust had to be gained over time – by one’s age, stature in society, track record, and by recommendation – who the people you trust say you should trust. Trust is transitive.

Another thing to note is that each written dispatch contained both ‘what’s new’ and ‘how the world works’ as well as a degree of phatic discourse: “This is what happened. This is what I think it means. And this is who I am so you know why you should trust me.” It is often hard to tell, from today’s perspective, what was scientific communication and what was journalism.

Personal – and thus potentially phatic – communication was a norm in the early scientific publishing. For example, see “A Letter from Mr J. Breintal to Peter Collinfoxl, F. RXS. contairnng an Account of what he felt after being bit by a Rattle-fnake” in Philosophical Transactions, 1747. – a great account of it can be found at Neurotic Physiology. It is a story of a personal interaction with a rattlesnake and the discovery leading from it. It contained “I was there, you were not, let me tell you what happened” and “I understand something, you don’t, let me explain that to you” and “Let me tell you who I am so you can know you can trust me”.

Apparently, quite a lot of scientific literature of old involved exciting narratives of people getting bitten by snakes – see this one from 1852 as well.

The anomalous 20th century – effects of technology

The gradual changes in society – invention of printing, rise of science, rise of capitalism, industrial revolution, mass migration from rural to urban areas, improvements in transportation and communication technologies, to name just a few – led to a very different world in the 20th century.

Technology often leads societal changes. If you were ever on a horse, you understand why armies that used stirrups defeated the armies that rode horses without this nifty invention.

Earlier, the speed of spreading news was much slower (see image: Maps of rates of travel in the 19th century – click on the link to see bigger and more). By 1860 Telegraph reached to St. Louis. During its short run the Pony Express could go the rest of the way to San Francisco in 10 days. After that, telegraph followed the rails. First transcontinental line was in 1869. Except for semaphores (1794) information before the telegraph (1843) could only travel as fast as a rider or boat (Thanks to John McKay for this brief primer on the history of speed of communication in Northern America. I am assuming that Europe was slightly ahead and the rest of the world somewhat behind).

The 20th century saw invention or improvement of numerous technologies in transportation – cars, fast trains, airplanes, helicopters, space shuttles – and in communication – telephone, radio, and television. Information could now travel almost instantly.

But those new technologies came with a price – literally. While everyone could write letters and send them by stagecoach, very few people could afford to buy, run and serve printing presses, radio stations and television studios. These things needed capital, and increasingly became owned by rich people and corporations.

Each inch of print or minute of broadcast costs serious money. Thus, people were employed to become official filters of information, the gatekeepers – the editors who decided who will get access to that expensive real estate. As the editors liked some people’s work better than others, those people got employed to work in the nascent newsrooms. Journalism became professionalized. Later, universities started journalism programs and codified instruction for new journalists, professionalizing it even more.

Instead of people informing each other, now the few professionals informed everyone else. And the technology did not allow for everyone else to talk back in the same medium.

The broadcast media, a few large corporations employing professional writers informing millions – with no ability for the receivers of information to fact-check, talk back, ask questions, be a part of the conversation – is an exception in history, something that lasted for just a few decades of the 20th century.

The anomalous 20th century – industrialization

Industrial Revolution brought about massive migration of people into big cities. The new type of work required a new type of workforce, one that was literate and more educated. This led to the invention of public schools and foundation of public universities.

In the area of science, many more people became educated enough (and science still not complex and expensive yet) to start their own surveys, experiments and tinkering. The explosion of research led to an explosion of new journals. Those too became expensive to produce and started requiring professional filters – editors. Thus scientific publishing also became professionalized. Not every personal anecdote could make it past the editors any more. Not everyone could call oneself a scientist either – a formal path emerged, ending with a PhD at a university, that ensured that science was done and published by qualified persons only.

By the 1960s, we got a mass adoption of peer-review by scientific journals that was experimentally done by some journals a little earlier. Yes, it is that recent! See for example this letter to Physical Review in 1936:

 

Dear Sir,

We (Mr. Rosen and I) had sent you our manuscript for publication and had not authorized you to show it to specialists before it is printed. I see no reason to address the — in any case erroneous — comments of your anonymous expert. On the basis of this incident I prefer to publish the paper elsewhere.

Respectfully,

Albert Einstein

Or this one:

 

John Maddox, former editor of Nature: The Watson and Crick paper was not peer-reviewed by Nature… the paper could not have been refereed: its correctness is self-evident. No referee working in the field … could have kept his mouth shut once he saw the structure…

Migration from small towns into big cities also meant that most people one would meet during the day were strangers. Meeting a stranger was not something extraordinary any more, so emergence and enforcement of proper proscribed conduct in cities replaced the need for one-to-one encounters and sizing up strangers using phatic language. Which is why even today phatic language is much more important and prevalent in rural areas where it aids personal survival than in urban centers where more general rules of behavior among strangers emerged (which may partially explain why phatic language is generally associated with conservative ideology and conceptual language with politicial liberalism, aka, the “reality-based community“).

People moving from small hometowns into big cities also led to breaking up of families and communities of trust. One needed to come up with new methods for figuring out who to trust. One obvious place to go was local media. They were stand-ins for village elders, parents, teachers and priests.

If there were many newspapers in town, one would try them all for a while and settle on one that best fit one’s prior worldview. Or one would just continue reading the paper one’s parents read.

But other people read other newspapers and brought their own worldviews into the conversation. This continuous presence of a plurality of views kept everyone’s BS filters in high gear – it was necessary to constantly question and filter all the incoming information in order to choose what to believe and what to dismiss.

The unease with the exposure to so many strangers with strange ideas also changed our notions of privacy. Suddenly we craved it. Our letters are now meant for one recepient only, with the understanding it will not be shared. Personal diaries now have lockets. After a century of such craving for privacy, we are again returning to a more historically traditional notions, by much more freely sharing our lives with strangers online.

The anomalous 20th century – cleansing of conceptual language in science and journalism

Until the 20th century we did not see the consolidation of media into large conglomerates, and of course, there were no mass radio or TV until mid-20th century. Not until later in the century did we see the monopolization of local media markets by a single newspaper (competitors going belly-up) which, then, had to serve everyone, so it had to invent the fake “objective” HeSaidSheSaid timid style of reporting in order not to lose customers of various ideological stripes and thus lose advertising revenue.

Professionalising of journalism, coupled with the growth of media giants serving very broad audiences, led to institutionalization of a type of writing that was very much limited to “what’s new”.

The “let me explain” component of journalism fell out of favor as there was always a faction of the audience that had a problem with the empirical facts – a faction that the company’s finances could not afford to lose. The personal – including phatic – was carefully eliminated as it was perceived as unobjective and inviting the criticism of bias. The way for a reporter to inject one’s opinion into the article was to find a person who thinks the same in order to get the target quote. A defensive (perhaps cowardly) move that became the norm. And, once the audience caught on, led to the loss of trust in traditional media.

Reduction of local media to a single newspaper, a couple of local radio stations and a handful of broadcast TV channels (that said esentially the same thing), left little choice for the audience. With only one source in town, there was no opportunity to filter among a variety of news sources. Thus, many people started unquestioningly accepting what 20th-century style broadcast media served them.

Just because articles were under the banners of big companies did not make them any more trustworthy by definition, but with no alternative it is still better to be poorly informed than not informed at all. Thus, in the 20th century we gradually lost the ability to read everything critically, awed by the big names like NYT and BBC and CBS and CNN. Those became the new parents, teachers, tribal elders and priests, the authority figures whose words are taken unquestioningly.

In science, explosion in funding not matched by explosion of job positions, led to overproduction of PhDs and a rise of hyper-competitive culture in academia. Writing books became unproductive. The only way to succeed is to keep getting grants and the only way to do that is to publish very frequently. Everything else had to fall by the wayside.

False measures of journal quality – like the infamous Impact Factor – were used to determine who gets a job and tenure and who falls out of the pipeline. The progress of science led inevitably to specialization and to the development of specialized jargon. Proliferation of expensive journals ensured that nobody but people in highest-level research institutions had access to the literature, so scientists started writing only for each other.

Scientific papers became dense, but also narrowed themselves to only “this is how the world works”. The “this is new” became left out as the audience already knew this, and it became obvious that a paper would not be published if it did not produce something new, almost by definition.

And the personal was so carefully excised for the purpose of seeming unbiased by human beings that it sometimes seems like the laboratory equipment did all the experiments of its own volition.

So, at the close of the 20th century, we had a situation in which journalism and science, for the first time in history, completely separated from each other. Journalism covered what’s new without providing the explanation and context for new readers just joining the topic. Science covered only explanation and only to one’s peers.

In order to bridge that gap, a whole new profession needed to arise. As scientists understood the last step of the scientific method – communication – to mean only ‘communication to colleagues’, and as regular press was too scared to put truth-values on any statements of fact, the solution was the invention of the science journalist – someone who can read what scientists write and explain that to the lay audience. With mixed success. Science is hard. It takes years to learn enough to be able to report it well. Only a few science journalists gathered that much expertise over the years of writing (and making mistakes on the way).

So, many science journalists fell back on reporting science as news, leaving the explanation out. Their editors helped in that by severely restricting the space – and good science coverage requires ample space.

A good science story should explain what is known by now (science), what the new study brings that is new (news) and why does that matter to you (phatic discourse). The lack of space usually led to omission of context (science), shortening of what is new (news) and thus leaving only the emotional story intact. Thus, the audience did not learn much, Certainly not enough to be able to evaluate next day’s and next week’s news.

This format also led to the choice of stories. It is easy to report in this way if the news is relevant to the audience anyway, e.g., concerning health (the “relevant” stories). It is also easy to report on misconduct of scientists (the “fishy” stories) – which is not strictly science reporting. But it was hard to report on science that is interesting for its own sake (the “cool” stories).

What did the audience get out of this? Scientists are always up to some mischief. And every week they change the story as to what is good or bad for my health. And it is not very fun, entertaining and exciting. No surprise that science as endeavour slowly started losing trust with the (American) population, and that it was easy for groups with financial, political or religious interests to push anti-science rhetoric on topics from hazards of smoking to stem-cell research to evolution to climate change.

At the end of the 20th century, thus, we had a situation in which journalism and science were completely separate endeavors, and the bridge between them – science journalism – was unfortunately operating under the rules of journalism and not science, messing up the popular trust in both.

Back to the Future

It is 2010. The Internet has been around for 30 years, the World Wide Web for 20. It took some time for the tools to develop and spread, but we are obviously undergoing a revolution in communication. I use the word “revolution” because it is so almost by definition – when the means of production change hands, this is a revolution.

The means of production, in this case the technology for easy, cheap and fast dissemination of information, are now potentially in the hands of everyone. When the people formerly known as the audience employ the press tools they have in their possession to inform one another, we call that ‘citizen journalism.’ And some of those citizens possess much greater expertise on the topics they cover than the journalists that cover that same beat. This applies to science as well.

In other words, after the deviation that was the 20th century, we are going back to the way we have evolved as a species to communicate – one-to-one and few-to-few instead of one-to-many. Apart from technology (software instead of talking/handwriting/printing), speed (microseconds instead of days and weeks by stagecoach, railroad or Pony Express, see image above) and the number of people reached (potentially – but rarely – millions simultaneously instead of one person or small group at a time), blogging, social networking and other forms of online writing are nothing new – this is how people have always communicated. Like Montaigne. And the Republic of Letters in the 18th century. And Charles Darwin in the 19th century.

All we are doing now is returning to a more natural, straightforward and honest way of sharing information, just using much more efficient ways of doing it. (Images from Cody Brown)

And not even that – where technology is scarce, the analog blogging is live and well (image: Analog blogger, from AfriGadget).

What about trustworthiness of all that online stuff? Some is and some isn’t to be trusted. It’s up to you to figure out your own filters and criteria, and to look for additional sources, just like our grandparents did when they had a choice of dozens of newspapers published in each of their little towns.

With the gradual return of a more natural system of communication, we got to see additional opinions, the regular fact-checks on the media by experts on the topic, and realized that the mainstream media is not to be trusted.

With the return of a more natural system of communication, we will all have to re-learn how to read critically, find second opinions, evaluate sources. Nothing new is there either – that is what people have been doing for millennia – the 20th century is the exception. We will figure out who to trust by trusting the judgment of people we already trust. Trust is transitive.

Return of the phatic language

What does this all mean for the future of journalism, including science journalism?

The growing number of Web-savvy citizens have developed new methods of establishing trustworthiness of the sources. It is actually the old one, pre-20th century method – relying on individuals, not institutions. Instead of treating WaPo, Fox, MSNBC and NPR as the proxies for the father, teacher, preacher and the medicine man, we now once again evaulate individuals.

As nobody enters a news site via the front page and looks around, but we all get to individual articles via links and searches, we are relying on bylines under the titles, not on the logos up on top. Just like we were not born trusting NYTimes but learned to trust it because our parents and neighbors did (and then perhaps we read it for some time), we are also not born knowing which individuals to trust. We use the same method – we start with recommendations from people we already trust, then make our own decisions over time.

If you don’t link to your sources, including to scientific papers, you lose trust. If you quote out of context without providing that context, you lose trust. If you hide who you are and where you are coming from – that is cagey and breeds mistrust. Transparency is the new objectivity.

And transparency is necessarily personal, thus often phatic. It shows who you are as a person, your background, your intentions, your mood, your alliances, your social status.

There are many reasons sciencebloggers are more trusted than journalists covering science.

First, they have the scientific expertise that journalists lack – they really know what they are talking about on the topic of their expertise and the audience understands this.

Second, they link out to more, more diverse and more reliable sources.

Third, being digital natives, they are not familiar with the concept of word-limits. They start writing, they explain it as it needs to be explained and when they are done explaining they end the post. Whatever length it takes to give the subject what it’s due.

Finally, not being trained by j-schools, they never learned not to let their personality shine through their writing. So they gain trust by connecting to their readers – the phatic component of communication.

Much of our communication, both offline and online, is phatic. But that is necessary for building trust. Once the trust is there, the conceptual communication can work. If I follow people I trust on Twitter, I will trust that they trust the sources they link to so I am likely to click on them. Which is why more and more scientists use Twitter to exchage information (PDF). Trust is transitive.

Scientists, becoming journalists

Good science journalists are rare. Cuts in newsrooms, allocation of too little space for science stories, assigning science stories to non-science journalists – all of these factors have resulted in a loss of quantity and quality of science reporting in the mainstream media.

But being a good science journalist is not impossible. People who take the task seriously can become experts on the topic they cover (and get to a position where they can refuse to cover astronomy if their expertise is evolution) over time. They can become temporary experts if they are given sufficient time to study instead of a task of writing ten stories per day.

With the overproduction of PhDs, many scientists are choosing alternative careers, including many of them becoming science writers and journalists, or Press Information Officers. They thus come into the profession with the expertise already there.

There is not much difference between a research scientist who blogs and thus is an expert on the topic s/he blogs about, and a research scientist who leaves the lab in order to write as a full-time job. They both have scientific expertise and they both love to write or they wouldn’t be doing it.

Blog is software. A medium. One of many. No medium has a higher coefficient of trustworthiness than any other. Despite never going to j-school and writing everything on blogs, I consider myself to be a science writer.

Many science journalists, usually younger though some of the old ones caught on quickly and became good at it (generation is mindset, not age), grok the new media ecosystem in which online collaboration between scientists and journalists is becoming a norm.

At the same time, many active scientists are now using the new tools (the means of production) to do their own communication. As is usually the case with novelty, different people get to it at different rates. The conflicts between 20th and 21st style thinking inevitably occur. The traditional scientists wish to communicate the old way – in journals, letters to the editor, at conferences. This is the way of gatekeeping they are used to.

But there have been a number of prominent cases of such clashes between old and new models of communication, including the infamous Roosevelts on toilets (the study had nothing to do with either US Presidents or toilets, but it is an instructive case – image by Dr.Isis), and several other smaller cases.

The latest one is the Arsenic Bacteria Saga in which the old-timers do not seem to undestand what a ‘blog’ means, and are seemingly completely unaware of the important distinction between ‘blogs’ and ‘scienceblogs’, the former being online spaces by just about anyone, the latter being blogs written by people who actually know their science and are vetted or peer-reviewed in some way e.g., at ResearchBlogging.org or Scienceblogging.org or by virtue of being hand-picked and invited to join one of the science blogging networks (which are often run by traditional media outlets or scientific publishers or societies) or simply by gaining resepect of peers over time.

Case by case, old-time scientists are learning. Note how both in the case of Roosevelts on toilets and the Arsenic bacteria the initially stunned scientists quickly learned and appreciated the new way of communication.

In other words, scientists are slowly starting to get out of the cocoon. Instead of just communicating to their peers behind the closed doors, now they are trying to reach out to the lay audience as well.

As more and more papers are Open Access and can be read by all, they are becoming more readable (as I predicted some years ago). The traditional format of the paper is changing. So they are covering “let me explain” portion better, both in papers and on their own blogs.

They may still be a little clumsy about the “what’s new” part, over-relying on the traditional media to do it for them via press releases and press conferences (see Darwinius and arsenic bacteria for good examples) instead of doing it themselves or taking control of the message (though they do need to rely on MSM to some extent due to the distinction between push and pull strategies as the media brands are still serving for many people as proxies for trustworthy sources).

But most importantly, they are now again adding the phatic aspect to their communication, revealing a lot of their personality on social networks, on blogs, and even some of them venturing into doing it in scientific papers.

By combining all three aspects of good communication, scientists will once again regain the trust of their audience. And what they are starting to do looks more and more like (pre-20th century) journalism.

Journalists, becoming scientists

On the other side of the divide, there is a renewed interest in journalism expanding from just “this is new” to “let me explain how the world works”. There are now efforts to build a future of context, and to design explainers.

If you are not well informed on an issue (perhaps because you are too young to remember when it first began, or the issue just started being relevant to you), following a stream of ‘what is new’ articles will not enlighten you. There is not sufficient information there. There is a lot of tacit knowledge that the writer assumes the readers possess – but many don’t.

There has to be a way for news items to link to some kind of collection of background information – an ‘explainer’. Such an explainer would be a collection of verifiable facts about the topic. A collection of verifiable facts about the way the world works is….scientific information!

With more and more journalists realizing they need to be transparent about where they are coming from, injecting personality into their work in order to build trust, some of that phatic language is starting to seep in, completing the trio of elements of effective communication.

Data Journalism – isn’t this science?

Some of the best journalism of the past – yes, the abominable 20th century – was done when a reporter was given several months to work on a single story requiring sifting through boxes and boxes of documents. The reporter becomes the expert on the topic, starts noticing patterns and writes a story that brings truly new knowledge to the world. That is practically science! Perhaps it is not the hardest of the hard sciences like physics, but as good as well-done social science like cultural anthropology, sociology or ethnography. There is a system and a method very much like the scientific method.

Unfortunately, most reporters are not given such luxury. They have to take shortcuts – interviewing a few sources to quote for the story. The sources are, of course, a very small and very unrepresentative sample of the relevant population – from a rolodex. Call a couple of climate scientists, and a couple of denialists, grab a quote from each and stick them into a formulaic article. That is Bad Science as well as Bad Journalism. And now that the people formerly known as audience, including people with expertise on the topic, have the tools to communicate to the world, they often swiftly point out how poorly such articles represent reality.

But today, most of the information, data and documents are digital, not in boxes. They are likely to be online and can be accessed without travel and without getting special permissions (though one may have to steal them – as Wikileaks operates: a perfect example of the new data journalism). Those reams of data can be analyzed by computers to find patterns, as well as by small armies of journalists (and other experts) for patterns and pieces of information that computer programs miss.

This is what bioinformaticists do (and have already built tools to do it – contact them, steal their tools!).

Data journalism. This is what a number of forward-thinking journalists and media organizations are starting to do.

This is science.

On the other hand, a lot of distributed, crowdsourced scientific research, usually called Citizen Science, is in the business of collecting massive amounts of data for analysis. How does that differ from data journalism? Not much?

Look at this scientific paper – Coding Early Naturalists’ Accounts into Long-Term Fish Community Changes in the Adriatic Sea (1800–2000) – is this science or data journalism? It is both.

The two domains of communicating about what is new and how the world works – journalism and science – have fused again. Both are now starting to get done by teams that involve both professionals and amateurs. Both are now led by personalities who are getting well-known in the public due to their phatic communication in a variety of old and new media.

It is important to be aware of the shortness of our lives and thus natural tendency for historical myopia. Just because we were born in the 20th century does not mean that the way things were done then are the way things were ‘always done’, or the best ways to do things – the pinnacle of cultural and social development. The 20th century was just a strange and deviant blip in the course of history.

As we are leaving the 20th century behind with all of its unusual historical quirks, we are going back to an older model of communicating facts – but with the new tools we can do it much better than ever, including a much broader swath of society – a more democratic system than ever.

By the way, while it’s still cold, the rain has stopped. And that is Metaphorical language…

This article was commissioned by Science Progress and will also appear on their site in 24 hours.

UC Berkeley Genetic Testing Affair: Science vs Science Education – guest post by Dr.Marie-Claire Shanahan

Marie-Claire Shanahan is an Assistant Professor of Science Education at the University of Alberta, in Edmonton, Alberta, Canada. As a former science teacher, she was always surprised by the ways that students talked themselves out of liking science – and she decided to do something about it. She now researches the social and cultural aspects of science and science education, especially those related to language and identity.

Marie-Claire and I first met online, then also in Real World when she attended ScienceOnline 2010, after which I interviewed her for my blog. You can check out her website and follow her on Twitter. Very interested in her scholarly work, I asked her if she would write a guest-post on one of her topics, and she very graciously agreed. Here is the post about the Berkeley genetic testing affair.

Outside of issues related to teaching evolution in schools, the words controversy and science education don’t often come into close contact with one another. It would be even rarer to be reporting on legislative intervention aimed at halting science education activities. So what’s going on with the UC Berkeley genetic testing affair?

News started to surface in May that Berkeley was going to be asking incoming first year and transfer students to send in a DNA swab. The idea was to stimulate discussion between students as part of the yearly On the Same Page program. A heated debate ensued that has ultimately lead to proposed state legislation that would bar California’s post secondary institutions from making unsolicited requests for DNA samples from students. Both the controversy and the legislation are excellently reported by Ferris Jabr at Scientific American here and here.

It would be reasonable to assume that this seems controversial because it involves genetic testing and therefore personal information. But is there more to it than that?

I chatted informally with some friends about the issue. One expressed her divided feelings about it saying (roughly quoted) “It seems like they [university admin] have addressed the ethical concerns well by being clear about the use of the swabs and the confidentiality but something still just doesn’t feel right. There’s still a part of me that shivers just a little bit.”

What is the shiver factor? Genetic testing and the idea that institutions might have access to our DNA do conjure some imaginative science fiction possibilities. So that could be causing the shivers. But from my perspective as a science education researcher, I think there’s also an underlying issue that makes this particular situation feel controversial: despite having science education goals, this looks and feels a lot more like science. That look and feel leads to confusion about how this initiative should be judged both from an ethical perspective and an educational one.

Science and science education are not the same thing (nor should they be). One way to think of them is through activity analysis, paying attention to who is involved, what are their objectives and what are the artefacts (e.g., tools, language, symbols), actions, and rules that those involved generally agree are used to accomplish the goals of the activity. Studies in activity theory emphasize the importance of shared understanding for accomplishing and progressing in any activity. I would argue that science and science education are different (though obviously related) activities. They have, in particular, different objectives and different artefacts, rules and actions that guide and shape them. As participants in one or the other (or both), teachers, parents, students, researchers, administrators have both tacit and explicit understandings of what each activity entails – what are the rules, the acceptable tools and practices and the appropriate language.

This is where the Berkeley project places itself in a fuzzy area. The objectives of the project are clearly stated to be educational. From the On the Same Page website: “we decided that involving students directly and personally in an assessment of genetic characteristics of personal relevance would capture their imaginations and lead to a deeper learning experience.” Okay, that sounds like the same reasons teachers and professors choose to do many activities. Sounds like science education.

But what about the tools? Testing students’ blood type or blood pressure uses tools commonly available in high school labs (or even at the drug store). The tools used here though are not commonly available – these samples are being sent to a laboratory for analysis. Participants don’t therefore have a shared perspective that these are the tools of education. They seem like the tools of science.

What about the language? One of the main publically accessible sources of information is the On the Same Page website, in particular an FAQ section for students. It starts with the questions: What new things are going on in the scientific community that make this a good time for an educational effort focused on personalized medicine? and Why did Berkeley decide to tackle the topic of Personalized Medicine? These are answered with appeals to educational discourse – to academic strengths, student opportunities, and the stature of Berkeley as an educational center. The agent or actor in the answers to these questions is the university as an educational institutional: “This type of broad, scholarly discussion of an important societal issue is what makes Berkeley special. From a learning perspective, our goal is to deliver a program that will enrich our students’ education and help contribute to an informed California citizenry.”

Beside these educational questions, however, are questions that are part of the usual language and processes of science: Will students be asked to provide “informed consent” for this test of their DNA? What about students who are minors? How can you assure the confidentiality and privacy of a student’s genetic information? What will happen to the data from this experiment? Has this project been approved by Berkeley’s Human Subjects Institutional Review Board? These questions are the questions that appear in human subjects information letters. They make this sound like this is science. The answers to these questions take a different perspective to the ones above. The technical terms are not educational ones but scientific ones. The actor in these responses is neither the educational institution nor the student as an educational participant but the student as a research object: “All students whether they are minors or not will be asked to provide informed consent. They will read and sign a detailed form describing exactly what will be done with their DNA sample, how the information will be used and secured for confidentiality, how this information might benefit them, and what the alternatives are to submitting a sample.”

Anyone who has done human subjects research will recognize this language is almost word for word from typical guidelines for informed consent documents. My consent forms usually don’t deal with DNA samples (usually something much less exotic, such as student writing or oral contributions during class) but the intent is the same. This language sets out the individuals under consideration as the objects of scientific research.

The overall effect is one of a mixed metaphor – is this research or is it teaching? Are the students actually acting in the role of students or are they the objects of research? What standards should we be using to judge if this is an appropriate action. The materials posted by UC Berkeley suggest that they believe this should be judged as an educational project. But the reaction of bioethicists and advocacy groups (such as the Council for Responsible Genetics) suggests that it be judged by research standards.

Why does it matter? Because the ethical considerations are different. As I said above, I don’t usually deal with any materials that would be considered very controversial. I research the way people (including students) write, read, speak and listen in situations related to science. When dealing with students, many of the activities that I use for research could also be used for educational purposes. For example, in a project this year I distributed different versions of scientific reading materials. I asked students to read these in pairs. I tape recorded their conversations and collected their written responses to the text. As a classroom teacher, these are strategies that I have used for educational purposes. Tape recording students allows me to listen to the struggles they might have had while reading a text. Collecting their written responses allows me to assess their understanding. Parents would not object to their child’s teacher using these tools for these purposes. When I visit a classroom as a researcher though, I am judged differently. Parents often do not consent to me collecting their children’s writing. They object, especially frequently, to my requests to videotape or photograph their children. This is because they rightfully understand educational research as a different activity from education. They use different judgments and expect different standards.

From the sequence of events, it sounds as if Berkeley admin started this project with their own perspective that this was clearly educational without adequate consideration that, from an outside position, it would be judged from a research perspective. I don’t want to suggest that this whole thing is a simple miscommunication because there are serious ethical implications related to asking for DNA samples. As people try to figure out how an educational idea ended up in the state legislature, though, I just wanted to add my perspective that some of the controversy might come from that shiver factor – something just doesn’t feel right. One aspect of that feel might be that this challenges the boundaries of our understanding of the activities of science and science education. The language and the tools and the objectives are mixed, leading to confusion about exactly what standards this should be judged against. As tools that have traditionally been associated with laboratory science become more accessible (as genetic testing is becoming) this boundary is likely to be challenged more and more. Those making the decisions to use these tools for educational, rather than research, purposes need to understand that challenging peoples conceptions of the boundaries between science and science education can and will lead to conflict and that conflict should be addressed head on and from the beginning.

Seven Questions….with Yours Truly

Last week, my SciBling Jason Goldman interviewed me for his blog. The questions were not so much about blogging, journalism, Open Access and PLoS (except a little bit at the end) but more about science – how I got into it, what are my grad school experiences, what I think about doing research on animals, and such stuff. Jason posted the interview here, on his blog, on Friday, and he also let me repost it here on my blog as well, under the fold:

Continue reading

Instead of your -80 freezer defrosting and ruining years of your research

Deposit it with people who guarantee your samples will remain frozen: