Creating slow-wave sleep on demand

Press-release just in – Deep Sleep: Researchers Discovery How To Simulate Slow Wave Activity:

———-snip————-
During slow wave activity, which occupies about 80 percent of sleeping hours, waves of electrical activity wash across the brain, roughly once a second, 1,000 times a night. In a new paper being published in the scientific journal PNAS, Tononi and colleagues, including Marcello Massimini, also of the UW-Madison School of Medicine and Public Health, described the use of transcranial magnetic stimulation (TMS) to initiate slow waves in sleeping volunteers. The researchers recorded brain electrical activity with an electroencephalograph (EEG).
A TMS instrument sends a harmless magnetic signal through the scalp and skull and into the brain, where it activates electrical impulses. In response to each burst of magnetism, the subjects’ brains immediately produced slow waves typical of deep sleep, Tononi says. “With a single pulse, we were able to induce a wave that looks identical to the waves the brain makes normally during sleep.”
The researchers have learned to locate the TMS device above a specific part of the brain, where it causes slow waves that travel throughout the brain. “We don’t know why, but this is a very good place to evoke big waves that clearly travel through every part of the brain,” Tononi says.
Scientists’ interest in slow waves stems from a growing appreciation of their role in sleep, Tononi says. “We have reasons to think the slow waves are not just something that happens, but that they may be important” in sleep’s restorative powers. For example, a sleep-deprived person has larger and more numerous slow waves once asleep. And as sleep proceeds, Tononi adds, the slow waves weaken, which may signal that the need for sleep is partially satisfied.
Creating slow waves on demand could someday lead to treatments for insomnia, where slow waves may be reduced. Theoretically, it could also lead to a magnetically stimulated “power nap,” which might confer the benefit of eight hours sleep in just a few hours.
Before that happens, however, Tononi must go further and prove that artificial slow waves have restorative benefits to the brain. Such an experiment would ask whether sleep with TMS leads to greater brain restoration than an equal amount of sleep without TMS.
Although an electronic power-napper sounds like a product whose time has come, Tononi is chasing a larger quarry: learning why sleep is necessary in the first place. If all animals sleep, he says, it must play a critical role in survival, but that role remains elusive.
———-snip————-

Once the paper shows up on the PNAS site, I’ll see if there is more I need to add to this story.

One response to “Creating slow-wave sleep on demand

  1. This is really interesting because SWS is altered in major depression and TMS may have a theurpetic effect on depression. Yet other piece of evidence that circadian rhythms disregulation is either exasberating factor or an etiological agent in psychiatric illiness.