New and Exciting in PLoS this week

PLoS Biology, Medicine, Neglected Tropical Diseases and ONE publish on Tuesday. What’s new today? As always, you should rate the articles, post notes and comments and send trackbacks when you blog about the papers. You can now also easily place articles on various social services (CiteULike, Mendeley, Connotea, Stumbleupon, Facebook and Digg) with just one click. Here are my own picks for the week – you go and look for your own favourites:

Condition and Phenotype-Dependent Dispersal in a Damselfly, Calopteryx splendens:

Individual dispersal decisions may be affected by the internal state of the individual and the external information of its current environment. Here we estimated the influence of dispersal on survival and investigated if individual phenotype (sex and wing length) and environmental condition (conspecific density and sex-ratio) affected dispersal decisions in the banded damselfly, Calopteryx splendens. As suspected from the literature, we showed that the proportion of dispersing individuals was higher in females than in males. We also found negative-density dependent dispersal in both sexes and influence of sex-ratio on dispersal. Individuals moved less when sex-ratio was male biased. These results are consistent with a lek mating system where males aggregate in a place and hold mating territories. Contrary to our expectations, neither dispersal nor survival was affected by wing length. Nevertheless, mean adult survival was about 8% lower in dispersing individuals than in residents. This might reflect a mortality cost due to dispersal.

Dark Matter Transcripts: Sound and Fury, Signifying Nothing?:

It seems, in retrospect, that understanding the protein-coding portion of the genome was the easy part; it’s the other 98% that’s the real challenge. Once derided as mere “junk DNA”–the useless relics of ancient mistakes–the non-coding regions recently earned a great deal more respect, stemming from a series of reports that these regions were hotbeds of transcription. The abundance of RNA signals from this mysterious genomic “dark matter” appeared to indicate that the genome was up to a whole lot more than simply churning out proteins from well-described genes.
But a new study published in this issue of PLoS Biology by Harm van Bakel, Timothy Hughes, and colleagues shows that most dark matter transcripts are likely to be by-products of transcription of known genes and that many of the rest of them are likely not messages of great import, but simple background noise.

Which New Approaches to Tackling Neglected Tropical Diseases Show Promise?:

This PLoS Medicine Debate examines the different approaches that can be taken to tackle neglected tropical diseases (NTDs). Some commentators, like Jerry Spiegel and colleagues from the University of British Columbia, feel there has been too much focus on the biomedical mechanisms and drug development for NTDs, at the expense of attention to the social determinants of disease. Burton Singer argues that this represents another example of the inappropriate “overmedicalization” of contemporary tropical disease control. Peter Hotez and colleagues, in contrast, argue that the best return on investment will continue to be mass drug administration for NTDs.

Genetic Diversity of Dahongjun, the Commercially Important ‘Big Red Mushroom’ from Southern China:

In southern China, a wild ectomycorrhizal mushroom commonly called “Dahongjun” or “Big Red Mushroom” by the local residents, has been harvested, consumed, and/or exported as an exotic food for many years. Although ecologically and economically important, very little is known about this mushroom, including its diversity and population structure. In this study, we analyzed 122 samples from five local populations representing the known distribution ranges of this mushroom in southern China. We investigated the genetic diversity and geographic structure of this mushroom using sequences from four DNA fragments. Our analyses identified that this mushroom contained at least three divergent lineages: one corresponds to a recently described species Russula griseocarnosa from southern China and the remaining two likely represent two novel species. While these lineages were prominently structured geographically based on ITS sequences, evidence for ancient and/or recent gene flow was also identified within individual lineages. In addition, a local population from Ailaoshan in central Yunnan Province where 85 of our 122 specimens came from showed clear evidence of recombination. The ectomycorrhizal mushroom “Dahongjun” from southern China is a species complex with at least three divergent lineages. These lineages are largely geographically structured and there is evidence for recombination in nature. Our results indicate mature Dahongjun mushrooms with abundant basidiospores are important for the reproduction of this mushroom in nature and that individual populations of this species should be managed separately.

Most ‘Dark Matter’ Transcripts Are Associated With Known Genes:

The human genome was sequenced a decade ago, but its exact gene composition remains a subject of debate. The number of protein-coding genes is much lower than initially expected, and the number of distinct transcripts is much larger than the number of protein-coding genes. Moreover, the proportion of the genome that is transcribed in any given cell type remains an open question: results from “tiling” microarray analyses suggest that transcription is pervasive and that most of the genome is transcribed, whereas new deep sequencing-based methods suggest that most transcripts originate from known genes. We have addressed this discrepancy by comparing samples from the same tissues using both technologies. Our analyses indicate that RNA sequencing appears more reliable for transcripts with low expression levels, that most transcripts correspond to known genes or are near known genes, and that many transcripts may represent new exons or aberrant products of the transcription process. We also identify several thousand small transcripts that map outside known genes; their sequences are often conserved and are often encoded in regions of open chromatin. We propose that most of these transcripts may be by-products of the activity of enhancers, which associate with promoters as part of their role as long-range gene regulatory sites. Overall, however, we find that most of the genome is not appreciably transcribed.

Comments are closed.