Several ScienceBloggers are reviewing Coming To Life today (see reviews by Janet, Shelley, RPM, Nick and PZ Edit: Razib has also posted his take), each one of us from a different perspective and looking from a different angle, so go read them to get the full scoop.
PZ Myers reviewed the book a few weeks ago. Someting that struck me was that PZ said that the book :
“….assumes nothing more than that the reader is intelligent and curious. Seriously, you don’t need a biology degree to read it!”
…while a reviewer, Edward F. Strasser (a math PhD whose hobby is reviewing books from this angle – how readable they are for laypeople) on Amazon.com states the opposite:
“I don’t think that a person who has never seen this material before is ready for this book, but I think that many people who need it for review will be OK.”
So, when I started reading the book I decided to try to empty my mind of all the knowledge I have and to read it like a complete lay-person. I wanted to see who is right – PZ or Strasser – and try to determine who is the real audience for the book.
First, I have to tell you that I absolutely LOVED the book. And that may be its biggest problem. The book will be appreciated the best by people like me – biologists with expertise in another field who want to brush up on their evo-devo (and just devo) and have an easy reference on the bookshelf. The book does absolutely great for people like that.
But, will it do the same for others? Developmental biologists do not have a need for it because they already know everything in it and 100 times more. But how about complete laymen, people with minimal formal science education but a keen interest in science, people who read popular science magazines, watch Discovery channel and read ScienceBlogs?
I’d say Yes, but very cautiously. In a way, the book is deceptive. Its small size and pretty cover art suggest a breezy read. But it is not. It is a textbook disguised as a non-fiction bestseller. The tone is a matter-of-fact, unexcited monotone. Trying to speed though it will be a disaster. Why?
A textbook on developmental biology would be an expensive, 1000-page, lushly illustrated avalanche of nitty-gritty details. Making the book small by eliminating a lot of that detail means that what remains is highly concentrated. Every sentence matters. Every sentence is a summary of a thousand papers.
There is no “filler” material, e.g., anecdotes and personal stories or interesting examples of, for instance, exceptions to the the rules in a strange species, or philosophical musings, kind of stuff that will let your focus wane every now and then without serious consequences to understanding. Only occasionally she slides in a little bit of history which is always a welcome change of pace on top of being very informative and placing the material in a historical context.
You need to slow down and read every sentence with concentration. Perhaps stop and think what it means every now and then. Sometimes you wish she has NOT omitted some of the details which may serve as a useful illustration of a big principle she is describing in that sentence or paragraph.
Several times I caught her using a technical word without explaining (or at least defining) it first. If you did not have Intro Bio recently, or are not generally well informed on basic genetics and molecular biology, that would throw you off, and make you rush to the back of the book to check the Glossary – something that breaks the flow of reading any book.
So, the book is great for people who have some biology background (at any level) but not much knowledge of developmental biology – people like sophomore biology majors. But how do you get them to slow down and read the book carefully? Well, use it as a textbook! For an Introduction to Development course. I am serious! It’s that good.
The instructor could spend time in class explaining the principles described in the book – a process which slows down the reading of the book. Then, each instructor is free to add as much or as little detail in lectures as the level of the course requires, plus cool examples, flashy images and videos, etc, and add a couple of more readings, e.g., scientific papers and reviews.
Heck, it could be used even for a General Biology class for science majors (e.g., a summer speed class). Genetics, development and evolution are the core of biology, so adding a couple of lectures (with additional notes or a similar book) on physiology, behavior and ecology at the end (and those can be built upon the edifice of genetics, development and evolution covered before), would work just fine in some contexts, eliminating the need for students (like mine, the adults) to buy huge expensive textbooks that only intimidate them with the wealth of detail. It would give the instructor more freedom to design a course well.
Why do I think that this book is better as a potential textbook than the usual texts? Apart from size, price, friendliness and giving the instructor greater freedom, I really like the way the material is explained.
From the very first sentence, and reinforced throughout the book, the message is that the cell is the smallest unit of life. Not genes. Cells. While most textbooks fall into the philosophically untenable habit-of-mind that “genes use cells to make more genes” or “cells are places where genes perform the work of life”, Nusslein-Volhard constantly explains stuff within the proper way of thinking – “genes are tools that cells use to change, to do their job within the organism, and to make more cells”. The shift is subtle. She rarely states it this directly and openly, but if you are reading the book specifically looking for it (as I did), you notice that the word-choice and the way of explainig things is always within this mode of thought. She also, whenever that is appropriate, never forgets to mention important influences of the internal and/or external environment on cells and tfe developing organisms.
The book also makes a gradual progression over levels. After basic introductions to evolution, heredity and molecular biology, she starts with the cell and how it uses genes to change its own and neighboring cells’ properties. As the chapters move on, there is less and less talk of genes and more and more talk of cells, tissues organs and whole organisms, ending with the return to evolution in an excellent chapter on Body Plans.
Understanding that most of the readers will be anthropocentric, she then devotes a chapter to the development and reproduction in those lousy lab animal models – humans.
The final chapter on controversial aspects of developmental biology and its practice – covering stuff like cloning, stem-cell research etc., is as calm and even-tempered (almost dry) as the rest of the book. More importantly, the conclusions given there are derived directly from the science described in the rest of the book, with no Culture-Wars code-words that can trigger automatical resentment on the part of readers that are involved in Culture Wars on one side or the other. Again, it provides the neccessary background that can be useful for a class discussion. And its dry, science-y tone is exactly what is needed for such a discussion.
So, if you are a biologist and you want to refresh and update your knowledge of development really fast and easy – get this book, it is better than any other in this respect.
If you are not a biologist, but have a keen interest and some background, get the book but do not expect to breeze through it in two hours. Do not be deceived by the small size and pretty illustrations Dr.Volhart drew herself. Give yourself a week to read this book, then read it slowly and with full concentration. Read that way, it is worth its weight in gold.
And if you are more interested in the “evo” side of evo-devo and a more future-oriented book (Coming To Life summarizes current knowledge with no speculations about the future), read “Biased Embryos and Evolution” (see my review) – the two books nicely complement each other.
My question to Dr.Nusslein-Volhard: Is it possible to turn Developmental Systems Theory into a useful experimental program and, if so, will that provide discoveries and insights that are lacking within the current paradigm?