Tag Archives: BIO101

BIO101 – Physiology: Regulation and Control

In this lecture, as well as in the previous one and the next one, I tackle areas of Biology where I am really weak: origin of life, diversity of life, and taxonomy/systematics. These are also areas where there has been a lot of change recently (often not yet incorporated into textbooks), and I am unlikely to be up-to-date, so please help me bring these lectures up to standards…. This post was originally written in 2006 and re-posted a few times, including in 2010.

As you may know, I have been teaching BIO101 (and also the BIO102 Lab) to non-traditional students in an adult education program for about twelve years now. Every now and then I muse about it publicly on the blog (see this, this, this, this, this, this and this for a few short posts about various aspects of it – from the use of videos, to the use of a classroom blog, to the importance of Open Access so students can read primary literature). The quality of students in this program has steadily risen over the years, but I am still highly constrained with time: I have eight 4-hour meetings with the students over eight weeks. In this period I have to teach them all of biology they need for their non-science majors, plus leave enough time for each student to give a presentation (on the science of their favourite plant and animal) and for two exams. Thus I have to strip the lectures to the bare bones, and hope that those bare bones are what non-science majors really need to know: concepts rather than factoids, relationship with the rest of their lives rather than relationship with the other sciences. Thus I follow my lectures with videos and classroom discussions, and their homework consists of finding cool biology videos or articles and posting the links on the classroom blog for all to see. A couple of times I used malaria as a thread that connected all the topics – from cell biology to ecology to physiology to evolution. I think that worked well but it is hard to do. They also write a final paper on some aspect of physiology.

Another new development is that the administration has realized that most of the faculty have been with the school for many years. We are experienced, and apparently we know what we are doing. Thus they recently gave us much more freedom to design our own syllabus instead of following a pre-defined one, as long as the ultimate goals of the class remain the same. I am not exactly sure when am I teaching the BIO101 lectures again (late Fall, Spring?) but I want to start rethinking my class early. I am also worried that, since I am not actively doing research in the lab and thus not following the literature as closely, that some of the things I teach are now out-dated. Not that anyone can possibly keep up with all the advances in all the areas of Biology which is so huge, but at least big updates that affect teaching of introductory courses are stuff I need to know.

I need to catch up and upgrade my lecture notes. And what better way than crowdsource! So, over the new few weeks, I will re-post my old lecture notes (note that they are just intros – discussions and videos etc. follow them in the classroom) and will ask you to fact-check me. If I got something wrong or something is out of date, let me know (but don’t push just your own preferred hypothesis if a question is not yet settled – give me the entire controversy explanation instead). If something is glaringly missing, let me know. If something can be said in a nicer language – edit my sentences. If you are aware of cool images, articles, blog-posts, videos, podcasts, visualizations, animations, games, etc. that can be used to explain these basic concepts, let me know. And at the end, once we do this with all the lectures, let’s discuss the overall syllabus – is there a better way to organize all this material for such a fast-paced class.

These posts are very old, and were initially on a private-set classroom blog, not public. I have no idea where the images come from any more, though many are likely from the textbook I was using at the time. Please let me know if an image is yours, needs to be attributed or removed. Thank you.

=================

It is impossible to cover all organ systems in detail over the course of just two lectures. Thus, we will stick only to the basics. Still, I want to emphasize how much organ systems work together, in concert, to maintain the homeostasis (and rheostasis) of the body. I’d also like to emphasize how fuzzy are the boundaries between organ systems – many organs are, both anatomically and functionally, simultaneously parts of two or more organ systems. So, I will use an example you are familiar with from our study of animal behavior – stress response – to illustrate the unity of the well-coordinated response of all organ systems when faced with a challenge. We will use our old zebra-and-lion example as a roadmap in our exploration of (human, and generally mammalian) physiology:

So, you are a zebra, happily grazing out on the savannah. Suddenly you hear some rustling in the grass. How did you hear it?

The movement of a lion produced oscillations of air. Those oscillations exerted pressure onto the tympanic membrane in your ears. The vibrations of the membrane induced vibrations in three little bones inside the middle ear, which, in turn, induced vibrations of the cochlea in the inner ear.

Cochlea is a long tube wrapped in a spiral. If the pitch of the sound is high (high frequency of oscillations), only the first portion of the cochlea vibrates. With the lowest frequences, even the tip of the cochlea starts vibrating. Cochlea is filled with fluid. Withing this fluid there is a thin membrane transecting the cochlea along its length. When the cochlea vibrates, this membrane also vibrates and those vibrations move the hair-like protrusions on the surface of sensory cells in the cochlea. Those cells send electrical impulses to the brain, where the sound is processed and becomes a conscious sensation – you have heard the lion move.

The perception of the sound makes you look – yes, there is a lion stalking you, about to leap! How do you see the lion? The waves of light reflected from the surface of the lion travel to your eyes, enter through the pupil, pass through the lens and hit the retina in the back of the eye.

Photoreceptors in the eye (rods and cones) contain a pigment – a colored molecule – that changes its 3D structure when hit by light. In the rods, this pigment is called rhodopsin and is used for black-and-white vision. In the rods, there are similar pigments – opsins – which are most sensitive to particular wavelengths of light (colors) and are used to detect color. The change in 3D structure of the pigment starts a cascade of biochemical reactions resulting in the changes in the electrical potential of the cell – this information is then transferred to the next cell, the next cell, and so on, until it reaches the brain, where the information about the shape, color and movement of the objects (lion and the surrounding grass) is processed and made conscious.

The ear and the eye are examples of the organs of the sensory system. Hearing is one of many mechanical senses – others include touch, pain, balance, stretch receptors in the muscles and tendons, etc. Many animals are capable of hearing sounds that we cannot detect. For instance, bats and some of their insect prey detect the high-pitched ultrasound (a case of a co-evolutionary arms-race). Likewise for dolphins and some of their fish prey. Dogs do, too – that is why we cannot hear the dog whistle. On the other hand, many large animals, e.g., whales, elephants, giraffes, rhinos, crocodiles and perhaps even cows and horses, can detect the deep rumble of the infrasound.

Vision is a sense that detects radiation in the visible specter. Many animals are capable of seeing light outside of our visible specter. For instance, many insects and birds and some small mammals can see ultraviolet light, while some snakes (e.g., pit vipers like rattlesnakes and boids like pythons) and some insects (e.g., Melanophila beetle and some wasps) can perceive infrared light.

Another type of sense is thermoreception – detection of hot and cold. Chemical senses are attuned to particular molecules. Olfaction (smell) and gustation (taste) are the best known chemical senses. Chemical senses also exist inside of our bodes – they are capable of detecting blood pH, blood levels of oxygen, carbon dioxide, calcium, glucose etc. Finally, some animals are capable of detecting other physical properties of the environment., e.g., the electrical and magnetic fields.

All senses work along the same principles: a stimulus from the external or internal environment is detected by a specialized type of cell. Inside the cell a chemical cascade begins – that is transduction. This changes the properties of the cell – usually its cell membrane potential – which is transmitted from the sensory cell to the neighboring nerve cell, to the next cell, next cell and so on, until it ends in the appropriate area of the nervous system, usually the brain. There, the sum of all stimuli from all the cells of the sensory organ are interpreted (integrated and processed over time) and the neccessary action is triggered. This action can be behavioral (movement), or it can be physiological: maintanance of homeostasis.

The sensory information is processed by the Central Nervous System (CNS): the brain and the spinal cord.

All the nerve cells that take information from the periphery to the CNS are sensory nerves. All the nerves that take the decisions made by the CNS to the effectors – muscles or glands – are motor nerves. The sensory and motor pathways together make Peripheral Nervous System.

The motor pathways are further divided into two domains: somatic nervous system is under voluntary control, while autonomic (vegetative) nervous system is involuntary. Autonomic nervous system has two divisions: sympathetic and parasymphatetic. Symphatetic nervous system is active during stress – it acts on many other organ systems, releasing the energy stores, stimulating organs needed for the response and inhibiting organs of no immediate importance.

Thus, a zebra about to be attacked by a lion is exhibiting stress response. Sympathetic nervous system works to release glucose (energy) stores from the liver, stimulates the organs necessary for the fast escape – muscles – and all the other systems that are needed for providing the muscles with energy – the circulatory and respiratory systems. At the same time, digestion, immunity, excretion and reproduction are inhibited. Once the zebra successfully evades the lion, sympathetic system gets inhibited and the parasympathetic system is stimulated – it reverses all the effects. The two systems work antagonistically to each other: they always have opposite effects.

But, how does the nervous system work? Let’s look at the nerve cell – the neuron:


A typical neuron has a cell body (soma) which contains the nucleus and other organelles. It has many thin, short processes – dendrites – that bring information from other neighboring cells into the nerve cell, and one large, long process that takes information away from the cell to another cell – the axon.

There is an electrical potential of the cell membrane – the voltage on the inside and the outside of the cell is different. The inside of the neuron is usually around 70mV more negative (-70mV) compared to the outside. This polarization is accomplished by the specialized proetins in the cell membrane – ion channels and ion transporters. Using energy from ATP, they transport sodium out of the cell and potassium into the cell (also chlorine into the cell). As ions can leak through the membrane to some extent, the cell has to constantly use energy to maintain the resting membrane potential.

An electrical impulse coming from another cell will change the membrane potential of a dendrite. This change is usually not sufficiently large to induce the neuron to respond. However, if many such stimuli occur simultaneously they are additive – the neuron sums up all the stimulatory and inhibitory impulses it gets at any given time. If the sum of impulses is large, the change of membrane potential will still be large when it travels across the soma and onto the very beginning of the axon – axon hillock. If the change of the membrane potential at the axon hillock crosses a threshold (around -40mV or so), this induces sodium channels at the axon hillock to open. Sodium rushes in down its concentration gradient. This results in further depolarization of the membrane, which in turn results in opening even more sodium channels which depolarizes the membrane even more – this is a positive feedback loop – until all of the Na-channels are open and the membrane potential is now positive. Reaching this voltage induces the opening of the potassium channels. Potassium rushes out along its concentration gradient. This results in repolarization of the membrane. The whole process – from initial small depolarization, through the fast Na-driven depolarization, subsequent K-driven repolarization resulting in a small overshoot and the return to the normal resting potential – is called an Action Potential which can be graphed like this:

An action potential generated at the axon hillock results in the changes of membrane potential in the neighboring membrane just down the axon where a new action potential is generated which, in turn, results in a depolarization of the membrane further on down the axon, and so on until the electrical impulse reaches the end of the axon. In vertebrates, special cells called Schwann cells wrap around the axons and serve as isolating tape of sorts. Thus, the action potential instead of spreading gradually down the axon, proceeds in jumps – this makes electrical transmission much faster – something necessary if the axon is three meters long as in the nerves of the hind leg of a giraffe.

What happens at the end of the axon? There, the change of membrane polarity results in the opening of the calcium channels and calcium rushes in (that is why calcium homeostasis is so important). The end of the axon contains many small packets filled with a neurotransmitter. Infusion of calcium stimulates these packets to fuse with the cell membrane and release the neurotransmitter out of the cell. The chemical ends up in a very small space between the axon ending and the membrane of another cell (e.g., a dendrite of another neuron). The membrane of that other cell has membrane receptors that respond to this neurotransmitter. The activation of the receptors results in the local change of membrane potential. Stimulatory neurotransmitters depolarize the membrane (make it more positive), while inhibitory neurotransmitters hyperpolarize the membrane – make it more negative, thus harder to produce an action potential.

The target of a nerve cell can be another neuron, a muscle cell or a gland. Many glands are endocrine glands – they release their chemical products, hormones, into the bloodstream. Hormones act on distant targets via receptors. While transmission of information in the nervous system is very fast – miliseconds, in the endocrine system it takes seconds, minutes, hours, days, months (pregnancy), even years (puberty) to induce the effect in the target. While transmission within the nervous system is local (cell-to-cell) and over very short distances – the gap within a synapse is measured in Angstroms – the transmission within the endocrine system is over long distances and global – it affects every cell that possesses the right kind of receptors.

Many endocrine glands are regulated during the stress response, and many of them participate in the stress response. The thyroid gland releases thyroxine – a hormone that acts via nuclear receptors. Thyroxine has many fuctions in the body and several of those are involved in the energetics of the body – release of energy from the stores and production of heat in the mitochondria. It also produces calcitonin which is one of the regulators of calcium levels in the blood.

Parathyroid gland is, in humans, embedded inside the thyroid gland. Its hormone, parathormone is the key hormone of calcium homeostasis. Calcitonin and parathormone are antagonists: the former lowers and the latter raises blood calcium. Together, they can fine-tune the calcium levels available to neurons, muscles and heart-cells for their normal function.

Pancreas secretes insulin and glucagon. Insulin removes glucose from blood and stores it in muscle and liver cells. Glucagon has the opposite effect – it releases glucose from its stores and makes it available to cells that are in need of energy, e.g., the muscle cells of a running zebra. Together, these two hormones fine-tune the glucose homeostasis of the body.

Adrenal gland has two layers. In the center is the adrenal medulla. It is a part of the nervous system and it releases epineprhine and norepinephrine (also known as adrenaline and noradrenaline). These are the key hormones of the stress response. They have all the same effects as the sympathetic nervous system, which is not surprising as norepinephrine is the neurotransmitter used by the neurons of the sympathetic system (parasympathetic system uses acetylcholine as a transmitter).

The outside layer is the adrenal cortex. It secretes a lot of hormones. The most important are aldosterone (involved in salt and water balance) and cortisol which is another important stress hormone – it mobilizes glucose from its stores and makes it available for the organs that need it. Sex steroid hormones are also produced in the adrenal cortex. Oversecretion of testosterone may lead to development of some male features in women, e.g., growing a beard.

Ovary and testis secrete sex steroid hormones. Testis secretes testosterone, while ovaries secrete estradiol (an estrogen) and progesterone. Progesterone stimulates the growth of mammary glands and prepares the uterus for pregnancy. Estradiol stimulates the development of female secondary sexual characteristics (e.g., general body shape, patterns of fat deposition and hair growth, growth of breasts) and is involved in monthly preparation for pregnancy.

Testosterone is very important in the development of a male embryo. Our default condition is female. Lack of sex steroids during development results in the development of a girl (even if the child is genetically male). Secretion of testosterone at a particular moment during development turns female genitals into male genitals and primes many organs, including the brain, to be responsive to the second big surge of testosterone which happens at the onset of puberty. At that time, primed tissues develop in a male-specific way, developing male secondary sexual characteristics (e.g., deep voice, beard, larger muscle mass, growth of genitalia, male-typical behaviors, etc.).

Many other organs also secrete hormones along with their other functions. The heart, kidney, lung, intestine and skin are all also members of the endocrine system. Thymus is an endocrine gland that is involved in the development of the immune system – once the immune system is mature, thymus shrinks and dissappears.

Many of the endocrine glands are themselves controlled by other hormones secreted by the pituitary gland – the Master Gland of the endocrine system. For instance, the anterior portion of the pituitary gland secretes hormones that stimulate the release of thyroxine from the thyroid gland, cortisol from the adrenal cortex, and sex steroids form the gonads. Other hormones secreted by the anterior pituitary are prolactin (stimulates production of milk, amog else) and growth hormone (which stimulates cells to produce autocrine and paracrine hormones which stimulate cell-division). The posterior portion of the pituitary is actually part of the brain – it secretes two hormones: antidiuretic hormone (control of water balance) and oxytocin (stimulates milk let-down and uterine contractions, among other functions).

All these pituitary hormones are, in turn, controlled (either stimulated or inhibited) by hormones/factors secreted by the hypothalamus which is a part of the brain, which makes the brain the biggest and most important endocrine gland of all.

Pineal organ is a part of the brain (thus central nervous system). In all vertebrates, except mammals and snakes, it is also a sensory organ – it perceieves light (which easily passes through scales/feathers, skin and skull). In seasonally breeding mammals, it is considered to be a part of the reproductive system. In all vertebrates, it is also an endocrine organ – it secretes a hormone melatonin. In all vertebrates, the pineal organ is an important part of the circadian system – a system that is involved in daily timing of all physiological and behavioral functions in the body. In many species of vertebrates, except mammals, the pineal organ is the Master Clock of the circadian system. In mammals, the master clock is located in the hypothalamus of the brain, in a structure known as the suprachiasmatic nucleus (SCN).

Retina is part of the eye (sensory system), it is part of the brain (nervous system), it also secretes melatonin (endocrine system) and contains a circadian clock (circadian system) in all vertebrates. In some species of birds, the master clock is located in the retina of the eye. The day-night differences in light intensity entrain (synchronize) the circadian system with the cycles in the environment. Those differences in light intensity are perceived by the retina, but not by photoreceptor cells (rods and cones). Instead, a small subset of retinal ganglion cells (proper nerve cells) contains a photopigment melanopsin which changes its 3D structure when exposed to light and sends its signals to the SCN in the brain.

Wherever the master clock may be located (SCN, pineal or retina) in any particular species, its main function is to coordinate the timing of peripheral circadian clocks which are found in every single cell in the body. Genes that code for proteins that are important for the function of a particular tissue (e.g., liver enzymes in liver cells, neurotransmitters in nerve cells, etc.) show a daily rhythm in gene expression. As a result, all biochemical, physiological and behavioral functions exhibit daily (circadian) rhythms, e.g., body temperature, blood pressure, sleep, cognitive abilities, etc. Notable exceptions are functions that have to be kept within a very narrow range of values, e.g., blood pH and blood concentration of calcium.

So, nervous, endocrine, sensory and circadian systems are all involved in control and regulation of other functions in the body. We will see what happens to all those other functions in the stressed, running zebra next week.

Previously in this series:

BIO101 – Biology and the Scientific Method
BIO101 – Cell Structure
BIO101 – Protein Synthesis: Transcription and Translation
BIO101: Cell-Cell Interactions
BIO101 – From One Cell To Two: Cell Division and DNA Replication
BIO101 – From Two Cells To Many: Cell Differentiation and Embryonic Development
BIO101 – From Genes To Traits: How Genotype Affects Phenotype
BIO101 – From Genes To Species: A Primer on Evolution
BIO101 – What Creatures Do: Animal Behavior
BIO101 – Organisms In Time and Space: Ecology
BIO101 – Origin of Biological Diversity
BIO101 – Evolution of Biological Diversity
BIO101 – Current Biological Diversity
BIO101 – Introduction to Anatomy and Physiology

BIO101 – From Two Cells To Many: Cell Differentiation and Embryonic Development

This post was originally written in 2006 and re-posted a few times, including in 2010. Please help me locate the sources of the images – I assume they are from the text book I used at the time, but am not completely sure.

As you may know, I have been teaching BIO101 (and also the BIO102 Lab) to non-traditional students in an adult education program for about twelve years now. Every now and then I muse about it publicly on the blog (see this, this, this, this, this, this and this for a few short posts about various aspects of it – from the use of videos, to the use of a classroom blog, to the importance of Open Access so students can read primary literature). The quality of students in this program has steadily risen over the years, but I am still highly constrained with time: I have eight 4-hour meetings with the students over eight weeks. In this period I have to teach them all of biology they need for their non-science majors, plus leave enough time for each student to give a presentation (on the science of their favourite plant and animal) and for two exams. Thus I have to strip the lectures to the bare bones, and hope that those bare bones are what non-science majors really need to know: concepts rather than factoids, relationship with the rest of their lives rather than relationship with the other sciences. Thus I follow my lectures with videos and classroom discussions, and their homework consists of finding cool biology videos or articles and posting the links on the classroom blog for all to see. A couple of times I used malaria as a thread that connected all the topics – from cell biology to ecology to physiology to evolution. I think that worked well but it is hard to do. They also write a final paper on some aspect of physiology.

Another new development is that the administration has realized that most of the faculty have been with the school for many years. We are experienced, and apparently we know what we are doing. Thus they recently gave us much more freedom to design our own syllabus instead of following a pre-defined one, as long as the ultimate goals of the class remain the same. I am not exactly sure when am I teaching the BIO101 lectures again (late Fall, Spring?) but I want to start rethinking my class early. I am also worried that, since I am not actively doing research in the lab and thus not following the literature as closely, that some of the things I teach are now out-dated. Not that anyone can possibly keep up with all the advances in all the areas of Biology which is so huge, but at least big updates that affect teaching of introductory courses are stuff I need to know.

I need to catch up and upgrade my lecture notes. And what better way than crowdsource! So, over the new few weeks, I will re-post my old lecture notes (note that they are just intros – discussions and videos etc. follow them in the classroom) and will ask you to fact-check me. If I got something wrong or something is out of date, let me know (but don’t push just your own preferred hypothesis if a question is not yet settled – give me the entire controversy explanation instead). If something is glaringly missing, let me know. If something can be said in a nicer language – edit my sentences. If you are aware of cool images, articles, blog-posts, videos, podcasts, visualizations, animations, games, etc. that can be used to explain these basic concepts, let me know. And at the end, once we do this with all the lectures, let’s discuss the overall syllabus – is there a better way to organize all this material for such a fast-paced class.

 

————————————————————————–
Cell Differentiation and Embryonic Development
BIO101 – Bora Zivkovic – Lecture 2 – Part 2
There are about 210 types of human cells, e.g., nerve cells, muscle cells, skin cells, blood cells, etc. Wikipedia has a nice comprehensive listing of all the types of human cells.

What makes one cell type different from the other cell types? After all, each cell in the body has exactly the same genome (the entire DNA sequence). How do different cells grow to look so different and to perform such different functions? And how do they get to be that way, out of homogenous (single cell type) early embryonic cells that are produced by cell division of the zygote (the fertilized egg)?

The difference between cell types is in the pattern of gene expression, i.e., which genes are turned on and which genes are turned off. Genes that code for enzymes involved in detoxification are transcribed in lver cells, but there is not need for them to be expressed in muscle cells or neurons. Genes that code for proteins that are involved in muscle contraction need not be transcribed in white blood cells. The patterns of gene expression are specific to cell types and are directly responsible for the differences between morphologies and functions of different cells.

How do different cell types decide which genes to turn on or off? This is the result of processes occurring during embryonic development.

The zygote (fertilized egg) appears to be a sphere. It may look homogenous, i.e., with no up and down, left or right. However, this is not so. The point of entry of the sperm cell into the egg may provide polarity for the cell in some organisms. In others, mother may deposit mRNAs or proteins in one particular part of the egg cell. In yet others, the immediate environment of the egg (e.g., the uterine lining, or the surface of the soil) may define polarity of the cell.

When the zygote divides, first into 2, then 4, 8, 16 and more cells, some of those daughter cells are on one pole (e.g., containing maternal chemicals) and the others on the other pole (e.g., not containing maternal chemicals). Presence of chemicals (or other influences) starts altering the decisions as to which genes will be turned on or off.

As some of the genes in some of the cells turn on, they may code for proteins that slowly diffuse through the developing early embryo. Low, medium and high concentrations of those chemicals are found in diferent areas of the embryo depending on the distance from the cell that produces that chemical.

Other cells respond to the concentration of that chemical by turning particular genes on or off (in a manner similar to the effects of steroid hormones acting via nuclear receptors, described last week). Thus the position (location) of a cell in the early embryo largely determines what cell type it will become in the end of the process of the embryonic development.

The process of altering the pattern of gene expression and thus becoming a cell of a particular type is called cell differentiation.

The zygote is a totipotent cell – its daughter cells can become any cell type. As the development proceeds, some of the cells become pluripotent – they can become many, but not all cell types. Later on, the specificity narrows down further and a particular stem cell can turn into only a very limited number of cell types, e.g., a few types of blood cells, but not bone or brain cells or anything else. That is why embryonic stem cell research is much more promising than the adult stem cell research.

The mechanism by which diffusible chemicals synthesized by one embryonic cell induces differentiation of other cells in the embryo is called induction. Turning genes on and off allows the cells to produce proteins that are neccessary for the changes in the way those cells look and function. For instance, development of the retina induces the development of the lens and cornea of the eye. The substance secreted by the developing retina can only diffuse a short distance and affect the neighboring cells, which become other parts of the eye.

During embryonic development, some cells migrate. For instance, cells of the neural crest migrate throughout the embryo and, depending on their new “neighborhood” differentiate into pigment cells, cells of the adrenal medula, etc.

Finally, many aspects of the embryo are shaped by programmed cell death – apoptosis. For instance, early on in development our hands look like paddles or flippers. But, the cells of our fingers induce the cell death of the cells between the fingers. Similarly, we initially develop more brain cells than we need. Those brain cells that establish connections with other nerve cells, muscles, or glands, survive. Other brain cells die.

Sometimes just parts of cells die off. For instance, many more synapses are formed than needed between neurons and other neurons, muscles and glands. Those synapses that are used remain and get stronger, the other synapses detach, and the axons shrivel and die. Which brain cells and which of their synapses survive depends on their activity. Those that are involved in correct processing of sensory information or in coordinated motor activity are retained. Thus, both sensory and motor aspects of the nervous system need to be practiced and tested early on. That is why embryos move, for instance – testing their motor coordination. That is why sensory deprivation in the early childhood is detrimental to the proper development of the child.

The details of embryonic development and mechanisms of cell differentiation differ between plants, fungi, protists, and various invertebrate and vertebrate animals. We will look at some examples of those, as well as some important developmental genes (e.g., homeotic genes) in future handouts/discussions, and will revisit the human development later in the course.

Previously in this series:

Biology and the Scientific Method
BIO101 – Cell Structure
BIO101 – Protein Synthesis: Transcription and Translation
BIO101: Cell-Cell Interactions
BIO101 – From One Cell To Two: Cell Division and DNA Replication

 

BIO101 – From One Cell To Two: Cell Division and DNA Replication

This post was originally written in 2006 and re-posted a few times, including in 2010.

As you may know, I have been teaching BIO101 (and also the BIO102 Lab) to non-traditional students in an adult education program for about twelve years now. Every now and then I muse about it publicly on the blog (see this, this, this, this, this, this and this for a few short posts about various aspects of it – from the use of videos, to the use of a classroom blog, to the importance of Open Access so students can read primary literature). The quality of students in this program has steadily risen over the years, but I am still highly constrained with time: I have eight 4-hour meetings with the students over eight weeks. In this period I have to teach them all of biology they need for their non-science majors, plus leave enough time for each student to give a presentation (on the science of their favourite plant and animal) and for two exams. Thus I have to strip the lectures to the bare bones, and hope that those bare bones are what non-science majors really need to know: concepts rather than factoids, relationship with the rest of their lives rather than relationship with the other sciences. Thus I follow my lectures with videos and classroom discussions, and their homework consists of finding cool biology videos or articles and posting the links on the classroom blog for all to see. A couple of times I used malaria as a thread that connected all the topics – from cell biology to ecology to physiology to evolution. I think that worked well but it is hard to do. They also write a final paper on some aspect of physiology.

Another new development is that the administration has realized that most of the faculty have been with the school for many years. We are experienced, and apparently we know what we are doing. Thus they recently gave us much more freedom to design our own syllabus instead of following a pre-defined one, as long as the ultimate goals of the class remain the same. I am not exactly sure when am I teaching the BIO101 lectures again (late Fall, Spring?) but I want to start rethinking my class early. I am also worried that, since I am not actively doing research in the lab and thus not following the literature as closely, that some of the things I teach are now out-dated. Not that anyone can possibly keep up with all the advances in all the areas of Biology which is so huge, but at least big updates that affect teaching of introductory courses are stuff I need to know.

I need to catch up and upgrade my lecture notes. And what better way than crowdsource! So, over the new few weeks, I will re-post my old lecture notes (note that they are just intros – discussions and videos etc. follow them in the classroom) and will ask you to fact-check me. If I got something wrong or something is out of date, let me know (but don’t push just your own preferred hypothesis if a question is not yet settled – give me the entire controversy explanation instead). If something is glaringly missing, let me know. If something can be said in a nicer language – edit my sentences. If you are aware of cool images, articles, blog-posts, videos, podcasts, visualizations, animations, games, etc. that can be used to explain these basic concepts, let me know. And at the end, once we do this with all the lectures, let’s discuss the overall syllabus – is there a better way to organize all this material for such a fast-paced class.

Today, we continue with the cell biology portion of the course – covering the way cells communicate with each other, something that will come up over and over again for the rest of the course. See the previous lectures:
Biology and the Scientific Method
BIO101 – Cell Structure
BIO101 – Protein Synthesis: Transcription and Translation
BIO101: Cell-Cell Interactions

Continuing with the Thursday BIO101 lecture notes, here is the fifth part. As always, I ask you to correct my errors and make suggestions to make the lecture better. Keep in mind that this is a VERY basic speed-course and that each of the lecture-notes covers roughly 45 minutes (often having 3-4 of these within the same day). This part was first posted on May 14, 2006.

——————————————-
Cell Division and DNA Replication

In the first lecture, we covered the way science works and especially how the scientific method applies to biology. Then, we looked at the structure of the cell, building a map of the cell – knowing what processes happen where in the cell, e.g., the production of energy-rich ATP molecules in the mitochondria.

In the third part of the lecture, we took a closer look at the way DNA code gets transcribed into RNA in the nucleus, and the RNA code translated into protein structure in the rough endoplasmatic reticulum. Finally, we looked at several different ways that cells communicate with each other and with the environment, thus modifying cell function.

All of that information will be important in this lecture, as we cover the ways cells divide, how cell-division, starting with a fertilized cell, builds an embryo, how genetic code (genotype) influences the observable and measurable traits (phenotype) and, finally, how do these processes affect the genetic composition of the populations of organisms of the same species – the process of evolution.

Mitosis

The only way to build a cell is by dividing an existing cell into two. As the genome (the complete sequence of the DNA) is an essential part of a cell, it is necessary for the DNA to be duplicated prior to cell division.

In Eukaryotic cells, chromosomes are structures composed mostly of DNA and protein. DNA is a long double-stranded chain-like molecule. Some portions of the DNA are permanently coiled and covered with protective proteins to prevent DNA expression (transcription). Other parts can be unraveled so transcription can occur.
The number of chromosomes is different in different species. Human cells possess 23 pairs of chromosomes. Prior to cell division each chromosome replicates producing two identical sister chromosomes – each eventually landing in one of the daughter cells.

The process of DNA replication – the way all of the DNA code of the mother cell duplicates and one copy goes into each daughter cell – is the most important aspect of cell division. It is wonderfully described in your handout and depicted in the animation. Other cell organelles also divide and split into two daughter cells. Once the process of DNA replication is over, the new portion of the cell membrane gets built transecting the cell and dividing all the genetic material into two cellular compartments, leading the cell to split into two cells.

Meiosis

Meiosis is a special case of cell division. While mitosis results in division of all types of cells in the body, meiosis results in the formation of sex cells – the gametes: eggs and sperm. Mitosis is a one-step process: one cell divides into two. Meiosis is a two-step process: one cell divides into two, then each daughter immediately divides again into two, resulting in four grand-daughter cells.

Each cell in the body has two copies of the entire DNA – one copy received from the mother, the other from the father. Fertilization (fusion of an egg and a sperm) would double the chromosome number in each generation if the egg and sperm cells had the duplicate copy. Meiosis ensures that gametes have only one copy of the genome – a mix of maternal and paternal sequences. Such a cell is called a haploid cell.

Once the egg and a sperm fuse, the resulting zygote (fertilized egg) again contains double dose of the DNA and is called a diploid cell. Thus the resultant zygote inherits genetic material from both its father and its mother. All the cells in the body except for the gametes are diploid. Sexual reproduction produces offspring that are genetically different from either parent.

DNA Replication

DNA replication is a complex process of duplication of the DNA involving many enzymes. It is the first and the most important process in cell division. Please read the handout (BREAKFAST OF CHAMPIONS DOES REPLICATION by David Ng) to appreciate the complexity of the process, but you do not need to memorize any of the enzymes for the exams. Also, it will help your understanding of the process if you watch this animation.

Further reading:
THE CELL CYCLE: A UNIVERSAL CELLULAR DIVISION PROGRAM By David Secko

Previously in this series:

Biology and the Scientific Method
BIO101 – Cell Structure
BIO101 – Protein Synthesis: Transcription and Translation
BIO101: Cell-Cell Interactions

BIO101 – Cell Structure

As you may know, I have been teaching BIO101 (and also the BIO102 Lab) to non-traditional students in an adult education program for about twelve years now. Every now and then I muse about it publicly on the blog (see this, this, this, this, this, this and this for a few short posts about various aspects of it – from the use of videos, to the use of a classroom blog, to the importance of Open Access so students can read primary literature). The quality of students in this program has steadily risen over the years, but I am still highly constrained with time: I have eight 4-hour meetings with the students over eight weeks. In this period I have to teach them all of biology they need for their non-science majors, plus leave enough time for each student to give a presentation (on the science of their favourite plant and animal) and for two exams. Thus I have to strip the lectures to the bare bones, and hope that those bare bones are what non-science majors really need to know: concepts rather than factoids, relationship with the rest of their lives rather than relationship with the other sciences. Thus I follow my lectures with videos and classroom discussions, and their homework consists of finding cool biology videos or articles and posting the links on the classroom blog for all to see. A couple of times I used malaria as a thread that connected all the topics – from cell biology to ecology to physiology to evolution. I think that worked well but it is hard to do. They also write a final paper on some aspect of physiology.

Another new development is that the administration has realized that most of the faculty have been with the school for many years. We are experienced, and apparently we know what we are doing. Thus they recently gave us much more freedom to design our own syllabus instead of following a pre-defined one, as long as the ultimate goals of the class remain the same. I am not exactly sure when am I teaching the BIO101 lectures again (late Fall, Spring?) but I want to start rethinking my class early. I am also worried that, since I am not actively doing research in the lab and thus not following the literature as closely, that some of the things I teach are now out-dated. Not that anyone can possibly keep up with all the advances in all the areas of Biology which is so huge, but at least big updates that affect teaching of introductory courses are stuff I need to know.

I need to catch up and upgrade my lecture notes. And what better way than crowdsource! So, over the new few weeks, I will re-post my old lecture notes (note that they are just intros – discussions and videos etc. follow them in the classroom) and will ask you to fact-check me. If I got something wrong or something is out of date, let me know (but don’t push just your own preferred hypothesis if a question is not yet settled – give me the entire controversy explanation instead). If something is glaringly missing, let me know. If something can be said in a nicer language – edit my sentences. If you are aware of cool images, articles, blog-posts, videos, podcasts, visualizations, animations, games, etc. that can be used to explain these basic concepts, let me know. And at the end, once we do this with all the lectures, let’s discuss the overall syllabus – is there a better way to organize all this material for such a fast-paced class.

Today, we continue into biology proper – the basic structure of a (mainly animal) cell. See the previous lectures:
Biology and the Scientific Method.

Follow me under the fold:
Continue reading